
IFC Inside: Retrofitting Languages with

Dynamic Information Flow Control

Stefan Heule1, Deian Stefan1, Edward Z. Yang1, John C. Mitchell1, and
Alejandro Russo2⋆⋆

1 Stanford University
2 Chalmers University

Abstract. Many important security problems in JavaScript, such as
browser extension security, untrusted JavaScript libraries and safe inte-
gration of mutually distrustful websites (mash-ups), may be effectively
addressed using an efficient implementation of information flow control
(IFC). Unfortunately existing fine-grained approaches to JavaScript IFC
require modifications to the language semantics and its engine, a non-goal
for browser applications. In this work, we take the ideas of coarse-grained
dynamic IFC and provide the theoretical foundation for a language-based
approach that can be applied to any programming language for which ex-
ternal effects can be controlled. We then apply this formalism to server-
and client-side JavaScript, show how it generalizes to the C programming
language, and connect it to the Haskell LIO system. Our methodology
offers design principles for the construction of information flow control
systems when isolation can easily be achieved, as well as compositional
proofs for optimized concrete implementations of these systems, by re-
lating them to their isolated variants.

1 Introduction

Modern web content is rendered using a potentially large number of different
components with differing provenance. Disparate and untrusting components
may arise from browser extensions (whose JavaScript code runs alongside web-
site code), web applications (with possibly untrusted third-party libraries), and
mashups (which combine code and data from websites that may not even be
aware of each other’s existence.) While just-in-time combination of untrusting
components offers great flexibility, it also poses complex security challenges. In
particular, maintaining data privacy in the face of malicious extensions, libraries,
and mashup components has been difficult.

Information flow control (IFC) is a promising technique that provides secu-
rity by tracking the flow of sensitive data through a system. Untrusted code
is confined so that it cannot exfiltrate data, except as per an information flow
policy. Significant research has been devoted to adding various forms of IFC to
different kinds of programming languages and systems. In the context of the
web, however, there is a strong motivation to preserve JavaScript’s semantics

⋆⋆ Work partially done while at Stanford.

and avoid JavaScript-engine modifications, while retrofitting it with dynamic
information flow control.

The Operating Systems community has tackled this challenge (e.g., in [45])
by taking a coarse-grained approach to IFC: dividing an application into coarse
computational units, each with a single label dictating its security policy, and
only monitoring communication between them. This coarse-grained approach
provides a number of advantages when compared to the fine-grained approaches
typically employed by language-based systems. First, adding IFC does not re-
quire intrusive changes to an existing programming language, thereby also al-
lowing the reuse of existing programs. Second, it has a small runtime overhead
because checks need only be performed at isolation boundaries instead of (al-
most) every program instruction (e.g., [19]). Finally, associating a single security
label with the entire computational unit simplifies understanding and reasoning
about the security guarantees of the system, without reasoning about most of
the technical details of the semantics of the underlying programming language.

In this paper, we present a framework which brings coarse-grained IFC ideas
into a language-based setting: an information flow control system should be
thought of as multiple instances of completely isolated language runtimes or
tasks, with information flow control applied to inter-task communication. We
describe a formal system in which an IFC system can be designed once and then
applied to any programming language which has control over external effects
(e.g., JavaScript or C with access to hardware privilege separation). We formal-
ize this system using an approach by Matthews and Findler [25] for combining
operational semantics and prove non-interference guarantees that are indepen-
dent of the choice of a specific target language.

There are a number of points that distinguish this setting from previous
coarse-grained IFC systems. First, even though the underlying semantic model
involves communicating tasks, these tasks can be coordinated together in ways
that simulate features of traditional languages. In fact, simulating features in
this way is a useful design tool for discovering what variants of the features are
permissible and which are not. Second, although completely separate tasks are
semantically easy to reason about, real-world implementations often blur the
lines between tasks in the name of efficiency. Characterizing what optimizations
are permissible is subtle, since removing transitions from the operational seman-
tics of a language can break non-interference. We partially address this issue by
characterizing isomorphisms between the operational semantics of our abstract
language and a concrete implementation, showing that if this relationship holds,
then non-interference in the abstract specification carries over to the concrete
implementation.

Our contributions can be summarized as follows:
– We give formal semantics for a core coarse-grained dynamic information flow

control language free of non-IFC constructs. We then show how a large class
of target languages can be combined with this IFC language and prove that
the result provides non-interference. (Sections 2 and 3)

– We provide a proof technique to show the non-interference of a concrete
semantics for a potentially optimized IFC language by means of an isomor-

phism and show a class of restrictions on the IFC language that preserves
non-interference. (Section 4)

– We have implemented an IFC system based on these semantics for Node.js,
and we connect our formalism to another implementation based on this work
for client-side JavaScript [37]. Furthermore, we outline an implementation
for the C programming language and describe improvements to the Haskell
LIO system that resulted from this framework. (Section 5)

In the extended version of this paper we give all the relevant proofs and
extend our IFC language with additional features [20].

2 Retrofitting Languages with IFC

Before moving on to the formal treatment of our system, we give a brief primer
of information flow control and describe some example programs in our system,
emphasizing the parallel between their implementation in a multi-task setting,
and the traditional, “monolithic” programming language feature they simulate.

Information flow control systems operate by associating data with labels, and
specifying whether or not data tagged with one label l1 can flow to another la-
bel l2 (written as l1 ⊑ l2). These labels encode the desired security policy (for
example, confidential information should not flow to a public channel), while
the work of specifying the semantics of an information flow language involves
demonstrating that impermissible flows cannot happen, a property called non-
interference [17]. In our coarse-grained floating-label approach, labels are associ-
ated with tasks. The task label—we refer to the label of the currently executing
task as the current label—serves to protect everything in the task’s scope; all
data in a task shares this common label.

As an example, here is a program which spawns a new isolated task, and
then sends it a mutable reference:

let i = TI⌊sandbox (blockingRecv x , in IT⌈ ! TI⌊x⌋⌉)⌋

in TI⌊send
IT⌈i⌉ l IT⌈ref true⌉⌋

For now, ignore the tags TI⌊ · ⌋ and IT⌈ · ⌉: roughly, this code creates a new
sandboxed task with identifier i which waits (blockingRecv, binding x with
the received message) for a message, and then sends the task a mutable reference
(ref true) which it labels l. If this operation actually shared the mutable cell
between the two tasks, it could be used to violate information flow control if the
tasks had differing labels. At this point, the designer of an IFC system might
add label checks to mutable references, to check the labels of the reader and
writer. While this solves the leak, for languages like JavaScript, where references
are prevalently used, this also dooms the performance of the system.

Our design principles suggest a different resolution: when these constructs
are treated as isolated tasks, each of which have their own heaps, it is obviously
the case that there is no sharing; in fact, the sandboxed task receives a dangling
pointer. Even if there is only one heap, if we enforce that references not be
shared, the two systems are morally equivalent. (We elaborate on this formally

in Section 4.) Finally, this semantics strongly suggests that one should restrict the
types of data which may be passed between tasks (for example, in JavaScript,
one might only allow JSON objects to be passed between tasks, rather than
general object structures).

Existing language-based, coarse-grained IFC systems [21, 35] allow a sub-
computation to temporarily raise the floating-label; after the sub-computation
is done, the floating-label is restored to its original label. When this occurs, the
enforcement mechanism must ensure that information does not leak to the (less
confidential) program continuation. The presence of exceptions adds yet more
intricacies. For instance, exceptions should not automatically propagate from a
sub-computation directly into the program continuation, and, if such exceptions
are allowed to be inspected, the floating-label at the point of the exception-
raise must be tracked alongside the exception value [18, 21, 35]. In contrast, our
system provides the same flexibility and guarantees with no extra checks: tasks
are used to execute sub-computations, but the mere definition of isolated tasks
guarantees that (a) tasks only transfer data to the program continuation by using
inter-task communication means, and (b) exceptions do cross tasks boundaries
automatically.

2.1 Preliminaries

Our goal now is to describe how to take a target language with a formal
operational semantics and combine it with an information flow control language.
For example, taking ECMAScript as the target language and combining it with
our IFC language should produce the formal semantics for the core part of
COWL [37]. In this presentation, we use a simple, untyped lambda calculus
with mutable references and fixpoint in place of ECMAScript to demonstrate
some the key properties of the system (and, because the embedding does not
care about the target language features); we discuss the proper embedding in
more detail in Section 5.

Notation We have typeset nonterminals of the target language using bold font
while the nonterminals of the IFC language have been typeset with italic font.
Readers are encouraged to view a color copy of this paper, where target language
nonterminals are colored red and IFC language nonterminals are colored blue.

2.2 Target Language: Mini-ES

In Fig. 1, we give a simple, untyped lambda calculus with mutable references and
fixpoint, prepared for combination with an information flow control language.
The presentation is mostly standard, and utilizes Felleisen-Hieb reduction se-
mantics [16] to define the operational semantics of the system. One peculiarity
is that our language defines an evaluation context E, but, the evaluation rules
have been expressed in terms of a different evaluation context EΣ; Here, we follow
the approach of Matthews and Findler [25] in order to simplify combining se-
mantics of multiple languages. To derive the usual operational semantics for this
language, the evaluation context merely needs to be defined as EΣ [e] , Σ,E [e].
However, when we combine this language with an IFC language, we reinterpret
the meaning of this evaluation context.

v ::= λx.e | true | false | a
e ::= v | x | e e | if e then e else e | ref e | !e | e := e | fix e

E ::= [·]T | E e | v E | if E then e else e | ref E | !E | E := e | v :=E | fix E

e1; e2 , (λx.e2) e1 where x 6∈ FV (e2)

let x = e1 in e2 , (λx.e2) e1

T-app

EΣ [(λx .e) v] → EΣ [{v / x } e]

T-ifTrue

EΣ [if true then e1 else e2] → EΣ [e1]

Fig. 1: λES: simple untyped lambda calculus extended with booleans, mutable refer-
ences and general recursion. For space reasons we only show two representative reduc-
tion rules; full rules can be found in the extended version of this paper.

In general, we require that a target language be expressed in terms of some
global machine state Σ, some evaluation context E, some expressions e, some set
of values v and a deterministic reduction relation on full configurationsΣ×E×e.

2.3 IFC Language

As mentioned previously, most modern, dynamic information flow control lan-
guages encode policy by associating a label with data. Our embedding is agnostic
to the choice of labeling scheme; we only require the labels to form a lattice [12]
with the partial order ⊑, join ⊔, and meet ⊓. In this paper, we simply represent
labels with the metavariable l, but do not discuss them in more detail. To enforce
labels, the IFC monitor inspects the current label before performing a read or
a write to decide whether the operation is permitted. A task can only write to
entities that are at least as sensitive. Similarly, it can only read from entities
that are less sensitive. However, as in other floating-label systems, this current
label can be raised to allow the task to read from more sensitive entities at the
cost of giving up the ability to write to others.

In Fig. 2, we give the syntax and single-task evaluation rules for a minimal
information flow control language. Ordinarily, information flow control languages
are defined by directly stating a base language plus information flow control oper-
ators. In contrast, our language is purposely minimal: it does not have sequencing
operations, control flow, or other constructs. However, it contains support for
the following core information flow control features:

– First-class labels, with label values l as well as operations for computing on
labels (⊑ , ⊔ and ⊓).

– Operations for inspecting (getLabel) and modifying (setLabel) the current
label of the task (a task can only increase its label).

– Operations for non-blocking inter-task communication (send and recv),
which interact with the global store of per-task message queues Σ.

– A sandboxing operation used to spawn new isolated tasks. In concurrent set-
tings sandbox corresponds to a fork-like primitive, whereas in a sequential
setting, it more closely resembles computations which might temporarely
raise the current floating-label [21, 33].

These operations are all defined with respect to an evaluation context E i,l
Σ

that represents the context of the current task. The evaluation context has three
important pieces of state: the global message queues Σ, the current label l and
the task ID i .

We note that first-class labels, tasks (albeit named differently), and opera-
tions for inspecting the current label are essentially universal to all floating-label
systems. However, our choice of communication primitives is motivated by those
present in browsers, namely postMessage [41]. Of course, other choices, such as
blocking communication or labeled channels, are possible.

These asynchronous communication primitives are worth further discussion.
When a task is sending a message using send, it also labels that message with
a label l′ (which must be at or above the task’s current label l). Messages can
only be received by a task if its current label is at least as high as the label of
the message. Specifically, receiving a message using recv x 1, x2 in e1 else e2
binds the message and the sender’s task identifier to local variables x 1 and x 2,
respectively, and then executes e1. Otherwise, if there are no messages, that task
continues its execution with e2. We denote the filtering of the message queue
by Θ � l, which is defined as follows. If Θ is the empty list nil, the function is
simply the identity function, i.e., nil � l = nil, and otherwise:

((l′, i , e), Θ) � l =

{

(l′, i , e), (Θ � l) if l′ ⊑ l

Θ � l otherwise

This ensures that tasks cannot receive messages that are more sensitive than
their current label would allow.

2.4 The Embedding

Fig. 3 provides all of the rules responsible for actually carrying out the embedding
of the IFC language within the target language. The most important feature of
this embedding is that every task maintains its own copy of the target language
global state and evaluation context, thus enforcing isolation between various
tasks. In more detail:

– We extend the values, expressions and evaluation contexts of both languages
to allow for terms in one language to be embedded in the other, as in [25]. In
the target language, an IFC expression appears as TI⌊e⌋ (“Target-outside,
IFC-inside”); in the IFC language, a target language expression appears as
IT⌈e⌉ (“IFC-outside, target-inside”).

– We reinterpret E to be evaluation contexts on task lists, providing definitions
for EΣ and E i,l

Σ . These rules only operate on the first task in the task list,
which by convention is the only task executing.

– We reinterpret →, an operation on a single task, in terms of →֒, operation
on task lists. The correspondence is simple: a task executes a step and then
is rescheduled in the task list according to schedule policy α. Fig. 4 defines
two concrete schedulers.

– Finally, we define some rules for scheduling, handling sandboxing tasks (which
interact with the state of the target language), and intermediating between
the borders of the two languages.

v ::= i | l | true | false | 〈〉 ⊗ ::= ⊑ | ⊔ | ⊓
e ::= v | x | e ⊗ e | getLabel | setLabel e | taskId | sandbox e

| send e e e | recv x , x in e else e

E ::= [·]I | E ⊗ e | v ⊗ E | setLabel E | send E e e | send v E e | send v v E
θ ::= (l, i e) Θ ::= nil | θ,Θ Σ ::= ∅ | Σ [i 7→ Θ]

I-getTaskId

E i,l
Σ [taskId] → E i,l

Σ [i]

I-getLabel

E i,l
Σ [getLabel] → E i,l

Σ [l]

I-labelOp
Jl1 ⊗ l2K = v

E i,l
Σ [l1 ⊗ l2] → E i,l

Σ [v]

I-send

l ⊑ l′ Σ(i ′) = Θ Σ′ = Σ
[

i
′ 7→ (l′, i , v), Θ

]

E i,l
Σ

[

send i
′ l′ v

]

→ E i,l

Σ′ [〈〉]

I-recv

(Σ(i) � l) = θ1, ..., θk , (l
′, i ′, v) Σ′ = Σ [i 7→ (θ1, ..., θk)]

E i,l
Σ [recv x1, x2 in e1 else e2] → E i,l

Σ′

[

{v / x 1, i
′ / x 2} e1

]

I-noRecv
Σ(i) � l = nil Σ′ = Σ [i 7→ nil]

E i,l
Σ [recv x1, x2 in e1 else e2] → E i,l

Σ′ [e2]

I-setLabel
l ⊑ l′

E i,l
Σ

[

setLabel l′
]

→ E i,l′

Σ [〈〉]

Fig. 2: IFC language with all single-task operations.

v ::= · · · | IT⌈v⌉

e ::= · · · | IT⌈e⌉

E ::= · · · | IT⌈E⌉

v ::= · · · | TI⌊v⌋
e ::= · · · | TI⌊e⌋
E ::= · · · | TI⌊E⌋

EΣ [e] , Σ; 〈Σ, E[e]T〉
i
l , . . .

E i,l
Σ [e] , Σ; 〈Σ, E[e]I〉

i
l , . . .

E [e] → Σ; t , . . . , E [e]
α
→֒ Σ;αstep(t , . . .)

I-sandbox
Σ′ = Σ

[

i
′ 7→ nil

]

Σ
′ = κ (Σ) t1 = 〈Σ, E[i ′]〉il tnew = 〈Σ′, e〉i

′

l fresh(i ′)

Σ; 〈Σ, E[sandbox e]I〉
i
l , . . .

α
→֒ Σ′;αsandbox(t1, . . . , tnew)

I-done

Σ; 〈Σ, v〉il , . . .
α
→֒ Σ;αdone(〈Σ, v〉il , . . .)

I-noStep

Σ; t , . . . 6
α
→֒

Σ; t , . . .
α
→֒ Σ;αnoStep(t , . . .)

I-border

E i,l
Σ

[

IT⌈TI⌊e⌋⌉
]

→ E i,l
Σ [e]

T-border

EΣ

[

TI⌊
IT⌈e⌉⌋

]

→ EΣ [e]

Fig. 3: The embedding LIFC(α, λ), where λ= (Σ,E, e,v,→)

RRstep(t1, t2, . . .) = t2, . . . , t1
RRdone(t1, t2, . . .) = t2, . . .
RRnoStep(t1, t2, . . .) = t2, . . .
RRsandbox(t1, t2, . . .) = t2, . . . , t1

Seqstep(t1, t2, . . .) = t1, t2, . . .
SeqnoStep(t1, t2, . . .) = t1, t2, . . .
Seqdone(t) = t

Seqdone(t1, t2, . . .) = t2, . . .
Seqsandbox(t1, t2, . . . , tn) = tn , t1, t2, . . .

Fig. 4: Scheduling policies (concurrent round robin on the left, sequential on the right).

The I-sandbox rule is used to create a new isolated task that executes
separately from the existing tasks (and can be communicated with via send
and recv). When the new task is created, there is the question of what the
target language state of the new task should be. Our rule is stated generically
in terms of a function κ. Conservatively, κ may be simply thought of as the
identity function, in which case the semantics of sandbox are such that the
state of the target language is cloned when sandboxing occurs. However, this is
not necessary: it is also valid for κ to remove entries from the state. In Section 4,
we give a more detailed discussion of the implications of the choice of κ, but all
our security claims will hold regardless of the choice of κ.

The rule I-noStep says something about configurations for which it is not

possible to take a transition. The notation c 6
α
→֒ in the premise is meant to be

understood as follows: If the configuration c cannot take a step by any rule other
than I-noStep, then I-noStep applies and the stuck task gets removed.

Rules I-done and I-noStep define the behavior of the system when the
current thread has reduced to a value, or gotten stuck, respectively. While these
definitions simply rely on the underlying scheduling policy α to modify the task
list, as we describe in Sections 3 and 6, these rules (notably, I-noStep) are
crucial to proving our security guarantees. For instance, it is unsafe for the whole
system to get stuck if a particular task gets stuck, since a sensitive thread may
then leverage this to leak information through the termination channel. Instead,
as our example round-robin (RR) scheduler shows, such tasks should simply
be removed from the task list. Many language runtime or Operating System
schedulers implement such schedulers. Moreover, techniques such as instruction-
based scheduling [10, 36] can be further applied close the gap between specified
semantics and implementation.

As in [25], rules T-border and I-border define the syntactic boundaries
between the IFC and target languages. Intuitively, the boundaries respectively
correspond to an upcall into and downcall from the IFC runtime. As an ex-
ample, taking λES as the target language, we can now define a blocking receive
(inefficiently) in terms of the asynchronous recv as series of cross-language calls:

blockingRecv x1, x2 in e , IT⌈fix (λk .TI⌊recv x 1, x2 in e else IT⌈k⌉⌋)⌉

For any target language λ and scheduling policy α, this embedding defines
an IFC language, which we will refer to as LIFC(α, λ).

3 Security Guarantees

We are interested in proving non-interference about many programming lan-
guages. This requires an appropriate definition of this notion that is language

agnostic, so in this section, we present a few general definitions for what an in-
formation flow control language is and what non-interference properties it may
have. In particular, we show that LIFC(α, λ), with an appropriate scheduler α,
satisfies non-interference [17], without making any reference to properties of λ.
We state the appropriate theorems here, and provide the formal proofs in the
extended version of this paper.

3.1 Erasure Function

When defining the security guarantees of an information flow control, we must
characterize what the secret inputs of a program are. Like other work [24, 30, 33,
34], we specify and prove non-interference using term erasure. Intuitively, term
erasure allows us to show that an attacker does not learn any sensitive informa-
tion from a program if the program behaves identically (from the attackers point
of view) to a program with all sensitive data “erased”. To interpret a language
under information flow control, we define a function εl that performs erasures
by mapping configurations to erased configurations, usually by rewriting (parts
of) configurations that are more sensitive than l to a new syntactic construct •.
We define an information flow control language as follows:

Definition 1 (Information flow control language). An information flow
control language L is a tuple (∆, →֒, εl), where ∆ is the type of machine con-
figurations (members of which are usually denoted by the metavariable c), →֒
is a reduction relation between machine configurations and εl :∆ → ε(∆) is an
erasure function parametrized on labels from machine configurations to erased
machine configurations ε(∆). Sometimes, we use V to refer to set of terminal
configurations in ∆, i.e., configurations where no further transitions are possible.

Our language LIFC(α, λ) fulfills this definition as (∆,
α
→֒, εl), where ∆ = Σ×

List(t). The set of terminal conditions V is Σ× tV , where tV ⊂ t is the type for
tasks whose expressions have been reduced to values.3 The erased configuration
ε(∆) extends ∆ with configurations containing •, and Fig. 5 gives the precise
definition for our erasure function εl. Essentially, a task and its corresponding
message queue is completely erased from the task list if its label does not flow
to the attacker observation level l. Otherwise, we apply the erasure function
homomorphically and remove any messages from the task’s message queue that
are more sensitive than l.

The definition of an erasure function is quite important: it captures the at-
tacker model, stating what can and cannot be observed by the attacker. In our
case, we assume that the attacker cannot observe sensitive tasks or messages, or
even the number of such entities. While such assumptions are standard [8, 34],
our definitions allow for stronger attackers that may be able to inspect resource
usage.4

3 Here, we abuse notation by describing types for configuration parts using the same
metavariables as the “instance” of the type, e.g., t for the type of task.

4 We believe that we can extend LIFC(α, λ) to such models using the resource limits
techniques of [42]. We leave this extension to future work.

εl(Σ; ts) = εl(Σ); filter (λt .t = •) (map εl ts)

εl(〈Σ, e〉il′) =

{

• l′ 6⊑ l

〈εl(Σ), εl(e)〉
i
l′ otherwise

εl(Σ [i 7→ Θ]) =

{

εl(Σ) l′ 6⊑ l, where l′ is the label of thread i

εl(Σ) [i 7→ εl(Θ)] otherwise

εl(Θ) = Θ � l εl(∅) = ∅

Fig. 5: Erasure function for tasks, queue maps, message queues, and configurations.
In all other cases, including target-language constructs, εl is applied homomorphically.
Note that εl(e) is always equal to e (and similar for Σ) in this simple setting. However,
when the IFC language is extended with more constructs as shown in Section 6, then
this will no longer be the case.

3.2 Non-Interference

Given an information flow control language, we can now define non-interference.
Intuitively, we want to make statements about the attacker’s observational power
at some security level l. This is done by defining an equivalence relation called
l-equivalence on configurations: an attacker should not be able to distinguish
two configurations that are l-equivalent. Since our erasure function captures
what an attacker can or cannot observe, we simply define this equivalence as the
syntactic-equivalence of erased configurations [34].

Definition 2 (l-equivalence). In a language (∆, →֒, εl), two machine config-
urations c, c′ ∈ ∆ are considered l-equivalent, written as c ≈l c

′, if εl(c) = εl(c
′).

We can now state that a language satisfies non-interference if an attacker at
level l cannot distinguish the runs of any two l-equivalent configurations. This
particular property is called termination sensitive non-interference (TSNI). Be-
sides the obvious requirement to not leak secret information to public channels,
this definition also requires the termination of public tasks to be independent of
secret tasks. Formally, we define TSNI as follows:

Definition 3 (Termination Sensitive Non-Interference (TSNI)). A lan-
guage (∆, →֒, εl) satisfies termination sensitive non-interference if for any label
l, and configurations c1, c

′
1, c2 ∈ ∆, if

c1 ≈l c2 and c1 →֒∗ c′1 (1)

then there exists a configuration c′2 ∈ ∆ such that

c′1 ≈l c
′

2 and c2 →֒∗ c′2 . (2)

In other words, if we take two l-equivalent configurations, then for every inter-
mediate step taken by the first configuration, there is a corresponding number
of steps that the second configuration can take to result in a configuration that
is l-equivalent to the first resultant configuration. By symmetry, this applies to
all intermediate steps from the second configuration as well.

Our language satisfies TSNI under the round-robin scheduler RR of Fig. 4.

Theorem 1 (Concurrent IFC language is TSNI). For any target language
λ, LIFC(RR, λ) satisfies TSNI.

In general, however, non-interference will not hold for an arbitrary scheduler
α. For example, LIFC(α, λ) with a scheduler that inspects a sensitive task’s
current state when deciding which task to schedule next will in general break
non-interference [4, 29].

However, even non-adversarial schedulers are not always safe. Consider, for
example, the sequential scheduling policy Seq given in Fig. 4. It is easy to show
that LIFC(Seq, λ) does not satisfy TSNI: consider a target language similar to
λES with an additional expression terminal ⇑ that denotes a divergent compu-
tation, i.e., ⇑ always reduces to ⇑ and a simple label lattice {pub, sec} such
that pub ⊑ sec, but sec 6⊑ pub. Consider the following two configurations in this
language:

c1 = Σ; 〈Σ1,
IT⌈ if false then ⇑ else true⌉〉1sec, 〈Σ2, e〉

2
pub

c2 = Σ; 〈Σ1,
IT⌈ if true then ⇑ else true⌉〉1sec, 〈Σ2, e〉

2
pub

These two configurations are pub-equivalent, but c1 will reduce (in two steps) to
c′1 = Σ; 〈Σ1,

IT⌈true⌉〉2pub, whereas c2 will not make any progress. Suppose that

e is a computation that writes to a pub channel,5 then the sec task’s decision to
diverge or not is directly leaked to a public entity.

To accommodate for sequential languages, or cases where a weaker guarantee
is sufficient, we consider an alternative non-interference property called termi-
nation insensitive non-interference (TINI). This property can also be upheld by
sequential languages at the cost of leaking through (non)-termination [3].

Definition 4 (Termination insensitive non-interference (TINI)). A lan-
guage (∆,V, →֒, εl) is termination insensitive non-interfering if for any label l,
and configurations c1, c2 ∈ ∆ and c′1, c

′
2 ∈ V , it holds that

(c1 ≈l c2 ∧ c1 →֒∗ c′1 ∧ c2 →֒∗ c′2) =⇒ c′1 ≈l c
′

2

TINI states that if we take two l-equivalent configurations, and both config-
urations reduce to final configurations (i.e., configurations for which there are no
possible further transitions), then the end configurations are also l-equivalent.
We highlight that this statement is much weaker than TSNI: it only states that
terminating programs do not leak sensitive data, but makes no statement about
non-terminating programs.

As shown by compilers [26, 31], interpreters [19], and libraries [30, 33], TINI
is useful for sequential settings. In our case, we show that our IFC language with
the sequential scheduling policy Seq satisfies TINI.

Theorem 2 (Sequential IFC language is TINI). For any target language
λ, LIFC(Seq, λ) satisfies TINI.

5 Though we do not model labeled channels, extending the calculus with such a
feature is straightforward, see Section 6.

4 Isomorphisms and Restrictions

The operational semantics we have defined in the previous section satisfy non-
interference by design. We achieve this general statement that works for a large
class of languages by having different tasks executing completely isolated from
each other, such that every task has its own state. In some cases, this strong
separation is desirable, or even necessary. Languages like C provide direct access
to memory locations without mechanisms in the language to achieve a separa-
tion of the heap. On the other hand, for other languages, this strong isolation
of tasks can be undesirable, e.g., for performance reasons. For instance, for the
language λES, our presentation so far requires a separate heap per task, which is
not very practical. Instead, we would like to more tightly couple the integration
of the target and IFC languages by reusing existing infrastructure. In the run-
ning example, a concrete implementation might use a single global heap. More
precisely, instead of using a configuration of the form Σ; 〈Σ1, e1〉

i1
l1
, 〈Σ2, e2〉

i2
l2

. . .

we would like a single global heap as in Σ;Σ; 〈e1〉
i1
l1
, 〈e2〉

i2
l2
, . . .

If the operational rules are adapted näıvely to this new setting, then non-
interference can be violated: as we mentioned earlier, shared mutable cells could
be used to leak sensitive information. What we would like is a way of char-
acterizing safe modifications to the semantics which preserve non-interference.
The intention of our single heap implementation is to permit efficient execution
while conceptually maintaining isolation between tasks (by not allowing sharing
of references between them). This intuition of having a different (potentially
more efficient) concrete semantics that behaves like the abstract semantics can
be formalized by the following definition:

Definition 5 (Isomorphism of information flow control languages). A
language (∆, →֒, εl) is isomorphic to a language (∆′, →֒′, ε′l) if there exist total
functions f :∆ → ∆′ and f −1 :∆′ → ∆ such that f ◦f −1 = id∆ and f −1◦f = id∆′ .
Furthermore, f and f −1 are functorial (e.g., if x′ R′ y′ then f(x′) R f(y′)) over
both l-equivalences and →֒.

If we weaken this restriction such that f −1 does not have to be functorial over
→֒, we call the language (∆, →֒, εl) weakly isomorphic to (∆′, →֒′, ε′l).

Providing an isomorphism between the two languages allows us to preserve
(termination sensitive or insensitive) non-interference as the following two theo-
rems state.

Theorem 3 (Isomorphism preserves TSNI). If L is isomorphic to L′ and
L′ satisfies TSNI, then L satisfies TSNI.

Proof. Shown by transporting configurations and reduction derivations from
L to L′, applying TSNI, and then transporting the resulting configuration, l-
equivalence and multi-step derivation back. ⊓⊔

Only weak isomorphism is necessary for TINI. Intuitively, this is because it is
not necessary to back-translate reduction sequences in L′ to L; by the definition
of TINI, we have both reduction sequences in L by assumption.

Theorem 4 (Weak isomorphism preserves TINI). If a language L is weakly
isomorphic to a language L′, and L′ satisfies TINI, then L satisfies TINI.

Proof. Shown by transporting configurations and reduction derivations from L

to L′, applying TINI and transporting the resulting equivalence back using func-
toriality of f −1 over l-equivalences. ⊓⊔

Unfortunately, an isomorphism is often too strong of a requirement. To obtain
an isomorphism with our single heap semantics, we need to mimic the behavior
of several heaps with a single actual heap. The interesting cases are when we
sandbox an expression and when messages are sent and received. The rule for
sandboxing is parametrized by the strategy κ (see Section 2), which defines what
heap the new task should execute with. We have considered two choices:

– When we sandbox into an empty heap, existing addresses in the sandboxed
expression are no longer valid and the task will get stuck (and then removed
by I-noStep). Thus, we must rewrite the sandboxed expression so that
all addresses point to fresh addresses guaranteed to not occur in the heap.
Similarly, sending a memory address should be rewritten.

– When we clone the heap, we have to copy everything reachable from the
sandboxed expression and replace all addresses correspondingly. Even worse,
the behavior of sending a memory address now depends on whether that
address existed at the time the receiving task was sandboxed; if it did, then
the address should be rewritten to the existing one.

Isomorphism demands we implement this convoluted behavior, despite our
initial motivation of a more efficient implementation.

4.1 Restricting the IFC Language

A better solution is to forbid sandboxed expressions as well as messages sent to
other tasks to contain memory addresses in the first place. In a statically typed
language, the type system could prevent this from happening. In dynamically
typed languages such as λES, we might restrict the transition for sandbox and
send to only allow expressions without memory addresses.

While this sounds plausible, it is worth noting that we are modifying the
IFC language semantics, which raises the question of whether non-interference
is preserved. This question can be subtle: it is easy to remove a transition from
a language and invalidate TSNI. Intuitively if the restriction depends on secret
data, then a public thread can observe if some other task terminates or not, and
from that obtain information about the secret data that was used to restrict the
transition. With this in mind, we require semantic rules to get restricted only
based on information observable by the task triggering them. This ensures that
non-interference is preserved, as the restriction does not depend on confiden-
tial information. Below, we give the formal definition of this condition for the
abstract IFC language LIFC(α, λ).

Definition 6 (Restricted IFC language). For a family of predicates P (one
for every reduction rule), we call LP

IFC(α, λ) a restricted IFC language if its

definition is equivalent to the abstract language LIFC(α, λ), with the following
exception: the reduction rules are restricted by adding a predicate P ∈ P to
the premise of all rules other than I-noStep. Furthermore, the predicate P can
depend only on the erased configuration εl(c), where l is the label of the first task
in the task list and c is the full configuration.

By the following theorem, the restricted IFC language with an appropriate
scheduling policy is non-interfering.

Theorem 5. For any target language λ and family of predicates P, the re-
stricted IFC language LP

IFC(RR, λ) is TSNI. Furthermore, the IFC language
LP
IFC(Seq, λ) is TINI.

In the extended version of this paper we give an example how this formalism
can be used to show non-intereference of an implementation of IFC with a single
heap.

5 Real World Languages

Our approach can be used to retrofit any language for which we can achieve
isolation with information flow control. Unfortunately, controlling the external
effects of a real-world language, as to achieve isolation, is language-specific and
varies from one language to another.6 Indeed, even for a single language (e.g.,
JavaScript), how one achieves isolation may vary according to the language run-
time or embedding (e.g., server and browser).

In this section, we describe several implementations and their approaches to
isolation. In particular, we describe two JavaScript IFC implementations building
on the theoretical foundations of this work. Then, we consider how our formalism
could be applied to the C programming language and connect it to a previous
IFC system for Haskell.

5.1 JavaScript

JavaScript, as specified by ECMAScript [14], does not have any built-in func-
tionality for I/O. For this language, which we denote by λJS, the IFC system
LIFC(RR, λJS) can be implemented by exposing IFC primitives to JavaScript
as part of the runtime, and running multiple instances of the JavaScript virtual
machine in separate OS-level threads. Unfortunately, this becomes very costly
when a system, such as a server-side web application, relies on many tasks.

Luckily, this issue is not unique to our work—browser layout engines also
rely on isolating code executing in separate iframes (e.g., according to the same-
origin policy). Since creating an OS thread for each iframe is expensive, both the
V8 and SpiderMonkey JavaScript engines provide means for running JavaScript
code in isolation within a single OS thread, on disjoint sub-heaps. In V8, this
unit of isolation is called a context ; in SpiderMonkey, it is called a compartment.
(We will use these terms interchangeably.) Each context is associated with a
global object, which, by default, implements the JavaScript standard library

6 Though we apply our framework to several real-world languages, it is conceivable
that there are languages for which isolation cannot be easily achieved.

TCB

main task-1 task-n

send n sec ...

recv x, i in ...

1

2

LIFC(SEQ,�JS)

Σ0 �JS+ Σ0 �JS+Σnode �JS+

Fig. 6: This example shows how our trusted monitor (left) is used to mediate com-
munication between two tasks for which IFC is enforced (right).

(e.g., Object, Array, etc.). Naturally, we adopt contexts to implement our notion
of tasks.

When JavaScript is embedded in browser layout engines, or in server-side
platforms such as Node.js, additional APIs such as the Document Object Model
(DOM) or the file system get exposed as part of the runtime system. These
features are exposed by extending the global object, just like the standard li-
brary. For this reason, it is easy to modify these systems to forbid external
effects when implementing an IFC system, ensuring that important effects can
be reintroduced in a safe manner.

Server-side IFC for Node.js: We have implemented LIFC(Seq, λJS) for Node.js
in the form of a library, without modifying Node.js or the V8 JavaScript engine.
Our implementation7 provides a library for creating new tasks, i.e., contexts
whose global object only contains the standard JavaScript library and our IFC
primitives (e.g., send and sandbox). When mapped to our formal treatment,
sandbox is defined with κ(Σ) = Σ0, whereΣ0 is the global object corresponding
to the standard JavaScript library and our IFC primitives. These IFC operations
are mediated by the trusted library code (executing as the main Node.js context),
which tracks the state (current label, messages, etc.) of each task. An example
for send/recv is shown in Fig. 6. Our system conservatively restricts the kinds
of messages that can be exchanged, via send (and sandbox), to string values.
In our formalization, this amounts to restricting the IFC language rule for send
in the following way:

JS-send

l ⊑ l′ Σ (i ′) = Θ Σ′ = Σ [i ′ 7→ (l′, i , v), Θ]

e = IT⌈e⌉ EΣ [typeOf(e) === "string"] → EΣ [true]

Σ; 〈Σ, E[send i ′ l′ v]I〉
i
l , . . . →֒ Σ′;αstep(〈Σ, E[〈〉]I〉

i
l , . . .)

Of course, we provide a convenience library which marshals JSON objects to/from
strings. We remark that this is not unlike existing message-passing JavaScript
APIs, e.g., postMessage, which impose similar restrictions as to avoid sharing
references between concurrent code.

While the described system implements LIFC(Seq, λJS), applications typi-
cally require access to libraries (e.g., the file system library fs) that have external
effects. Exposing the Node.js APIs directly to sandboxed tasks is unsafe. Instead,

7 Available at http://github.com/deian/espectro.

http://github.com/deian/espectro

we implement libraries (like a labeled version of fs) as message exchanges be-
tween the sandboxed tasks (e.g., task-1 in Fig. 6) and the main Node.js task that
implements the IFC monitor. While this is safer than simply wrapping unsafe
objects, which can potentially be exploited to access objects outside the context
(e.g., as seen with ADSafe [38]), adding features such as the fs requires the code
in the main task to ensures that labels are properly propagated and enforced.
Unfortunately, while imposing such a proof burden is undesirable, this also has
to be expected: different language environments expose different libraries for
handling external I/O, and the correct treatment of external effects is appli-
cation specific. We do not extend our formalism to account for the particular
interface to the file system, HTTP client, etc., as this is specific to the Node.js
implementation and does not generalize to other systems.

Client-side IFC: This work provides the formal basis for the core part of the
COWL client-side JavaScript IFC system [37]. Like our Node.js implementa-
tion, COWL takes a coarse-grained approach to providing IFC for JavaScript
programs. However, COWL’s IFC monitor is implemented in the browser layout
engine instead (though still leaving the JavaScript engine unmodified).

Furthermore, COWL repurposes existing contexts (e.g., iframes and pages)
as IFC tasks, only imposing additional constraints on how they communicate.
As with Node.js, at its core, the global object of a COWL task should only
contain the standard JavaScript libraries and postMessage, whose semantics
are modeled by our JS-send rule. However, existing contexts have objects such
as the DOM, which require COWL to restrict a task’s external effects. To this
end, COWL mediates any communication (even via the DOM) at the context
boundary.

Simply disallowing all the external effects is overly-restricting for real-world
applications (e.g., pages typically load images, perform network requests, etc.). In
this light, COWL allows safe network communication by associating an implicit
label with remote hosts (a host’s label corresponds to its origin). In turn, when
a task performs a request, COWL’s IFC monitor ensures that the task label
can flow to the remote origin label. While the external effects of COWL can be
formally modeled, we do not model them in our formalism, since, like for the
Node.js case, they are specific to this system.

5.2 Haskell

Our work borrows ideas from the LIO Haskell coarse-grained IFC system [33, 34].
LIO relies on Haskell’s type system and monadic encoding of effects to achieve
isolation and define the IFC sub-language. Specifically, LIO provides the LIO

monad as a way of restricting (almost all) side-effects. In the context of our
framework, LIO can be understood as follows: the pure subset of Haskell is
the target language, while the monadic subset of Haskell, operating in the LIO

monad, is the IFC language.
Unlike our proposal, LIO originally associated labels with exceptions, in a

similar style to fine-grained systems [21, 35]. In addition to being overly complex,
the interaction of exceptions with clearance (which sets an upper bound on the
floating label, see the extended version of this paper) was incorrect: the clearance

was restored to the clearance at point of the catch. Furthermore, pure exceptions
(e.g., divide by zero) always percolated to trusted code, effectively allowing for
denial of service attacks. The insights gained when viewing coarse-grained IFC
as presented in this paper led to a much cleaner, simpler treatment of exceptions,
which has now been adopted by LIO.

5.3 C

C programs are able to execute arbitrary (machine) code, access arbitrary mem-
ory, and perform arbitrary system calls. Thus, the confinement of C programs
must be imposed by the underlying OS and hardware. For instance, our notion
of isolation can be achieved using Dune’s hardware protection mechanisms [5],
similar to Wedge [5, 7], but using an information flow control policy. Using page
tables, a (trusted) IFC runtime could ensure that each task, implemented as a
lightweight process, can only access the memory it allocates—tasks do not have
access to any shared memory. In addition, ring protection could be used to in-
tercept system calls performed by a task and only permit those corresponding
to our IFC language (such as getLabel or send). Dune’s hardware protection
mechanism would allow us to provide a concrete implementation that is efficient
and relatively simple to reason about, but other sandboxing mechanisms could
be used in place of Dune.

In this setting, the combined language of Section 2 can be interpreted in the
following way: calling from the target language to the IFC language corresponds
to invoking a system call. Creating a new task with the sandbox system call
corresponds to forking a process. Using page tables, we can ensure that there
will be no shared memory (effectively defining κ(Σ) = Σ0, where Σ0 is the set of
pages necessary to bootstrap a lightweight process). Similarly, control over page
tables and protection bits allows us to define a send system call that copies
pages to our (trusted) runtime queue; and, correspondingly, a recv that copies
the pages from the runtime queue to the (untrusted) receiver. Since C is not
memory safe, conditions on these system calls are meaningless. We leave the
implementation of this IFC system for C as future work.

6 Extensions and Limitations

While the IFC language presented thus far provides the basic information flow
primitives, actual IFC implementations may wish to extend the minimal system
with more specialized constructs. For example, COWL provides a labeled version
of the XMLHttpRequest (XHR) object, which is used to make network requests.
Our system can be extended with constructs such as labeled values, labeled mu-
table references, clearance, and privileges. For space reasons, we provide details
of this, including the soundness proof with the extensions, in the appendix of
the extended version of this paper. Here, we instead discuss a limitation of our
formalism: the lack of external effects.

Specifically, our embedding assumes that the target language does not have
any primitives that can induce external effects. As discussed in Section 5, im-
posing this restriction can be challenging. Yet, external effects are crucial when

implementing more complex real-world applications. For example, code in an
IFC browser must load resources or perform XHR to be useful.

Like labeled references, features with external effects must be modeled in
the IFC language; we must reason about the precise security implications of
features that otherwise inherently leak data. Previous approaches have mod-
eled external effects by internalizing the effects as operations on labeled chan-
nels/references [34]. Alternatively, it is possible to model such effects as messages
to/from certain labeled tasks, an approach taken by our Node.js implementa-
tion. These “special” tasks are trusted with access to the unlabeled primitives
that can be used to perform the external effects; since the interface to these
tasks is already part of the IFC language, the proof only requires showing that
this task does not leak information. Instead of restricting or wrapping unsafe
primitives, COWL allow for controlled network communication at the context
boundary. (By restricting the default XHR object, for example, COWL allows
code to communicate with hosts according to the task’s current label.)

7 Related Work

Our information flow control system is closely related to the coarse-grained in-
formation systems used in operating systems such as Asbestos [15], HiStar [45],
and Flume [23], as well as language-based floating-label IFC systems such as
LIO [33], and Breeze [21], where there is a monotonically increased label as-
sociated with threads of execution. Our treatment of termination-sensitive and
termination-insensitive interference originates from Smith and Volpano [32, 40].

One information flow control technique designed to handle legacy code is
secure multi-execution (SME) [13, 28]. SME runs multiple copies of the program,
one per security level, where the semantics of I/O interactions is altered. Bielova
et al. [6] use a transition system to describe SME, where the details of the
underlying language are hidden. Zanarini et al. [44] propose a novel semantics
for programs based on interaction trees [22], which treats programs as black-
boxes about which nothing is known, except what can be inferred from their
interaction with the environment. Similar to SME, our approach mediates I/O
operations; however, our approach only runs the program once.

One of the primary motivations behind this paper is the application of infor-
mation flow control to JavaScript. Previous systems retrofitted JavaScript with
fine-grained IFC [18, 19]. While fine-grained IFC can result in fewer false alarms
and target legacy code, it comes at the cost of complexity: the system must
accommodate the entirety of JavaScript’s semantics [19]. By contrast, coarse-
grained approaches to security tend to have simpler implications [11, 43].

The constructs in our IFC language, as well as the behavior of inter-task com-
munication, are reminiscent of distributed systems like Erlang [2]. In distributed
systems, isolation is required due to physical constraints; in information flow
control, isolation is required to enforce non-interference. Papagiannis et al. [27]
built an information flow control system on top of Erlang that shares some sim-
ilarities to ours. However, they do not take a floating-label approach (processes
can find out when sending a message failed due to a forbidden information flow),
nor do they provide security proofs.

There is limited work on general techniques for retrofitting arbitrary lan-
guages with information flow control. However, one time-honored technique is
to define a fundamental calculus for which other languages can be desugared
into. Abadi et al. [1] motivate their core calculus of dependency by showing how
various previous systems can be encoded in it. Tse and Zdancewic [39], in turn,
show how this calculus can be encoded in System F via parametricity. Broberg
and Sands [9] encode several IFC systems into Paralocks. However, this line of
work is primarily focused on static enforcements.

8 Conclusion

In this paper, we argued that when designing a coarse-grained IFC system, it
is better to start with a fully isolated, multi-task system and work one’s way
back to the model of a single language equipped with IFC. We showed how
systems designed this way can be proved non-interferent without needing to rely
on details of the target language, and we provided conditions on how to securely
refine our formal semantics to consider optimizations required in practice. We
connected our semantics to two IFC implementations for JavaScript based on
this formalism, explained how our methodology improved an exiting IFC system
for Haskell, and proposed an IFC system for C using hardware isolation. By
systematically applying ideas from IFC in operating systems to programming
languages for which isolation can be achieved, we hope to have elucidated some
of the core design principles of coarse-grained, dynamic IFC systems.

Acknowledgements We thank the POST 2015 anonymous reviewers, Adriaan Lar-

museau, Sergio Maffeis, and David Mazières for useful comments and suggestions. This

work was funded by DARPA CRASH under contract #N66001-10-2-4088, by the NSF,

by the AFOSR, by multiple gifts from Google, by a gift from Mozilla, and by the

Swedish research agencies VR and the Barbro Oshers Pro Suecia Foundation. Deian

Stefan and Edward Z. Yang were supported by the DoD through the NDSEG.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A Core Calculus of Dependency. In POPL,

1999.

[2] J. Armstrong. Making reliable distributed systems in the presence of software errors. 2003.

[3] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninterference leaks
more than just a bit. ESORICS, 2008.

[4] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of multithreaded programs by com-
pilation. In ESORICS, 2007.

[5] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and C. Kozyrakis. Dune: Safe
user-level access to privileged CPU features. In OSDI, 2012.

[6] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference for a browser
model. In NSS, 2011.

[7] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting applications into reduced-
privilege compartments. In NSDI, 2008.

[8] Boudol and Castellani. Noninterference for concurrent programs. In ICALP, 2001.

[9] N. Broberg and D. Sands. Paralocks: Role-based information flow control and beyond. In
POPL, 2010.

[10] P. Buiras, A. Levy, D. Stefan, A. Russo, and D. Mazières. A library for removing cache-based
attacks in concurrent information flow systems. In TGC, 2013.

[11] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. FlowFox: a web browser with flexible
and precise information flow control. In CCS, 2012.

[12] D. E. Denning. A lattice model of secure information flow. Commun. ACM, 19(5), 1976.

[13] D. Devriese and F. Piessens. Noninterference through secure multi-execution. In SP, 2010.

[14] Ecma International. ECMAScript language specification. http://www.ecma.org/, 2014.

[15] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler, D. Mazières,
F. Kaashoek, and R. Morris. Labels and event processes in the Asbestos operating system. In
SOSP, 2005.

[16] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and
state. TCS, 103(2), 1992.

[17] J. Goguen and J. Meseguer. Security policies and security Models. In SP, 1982.

[18] D. Hedin and A. Sabelfeld. Information-flow security for a core of javascript. In CSF, 2012.

[19] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information flow in
JavaScript and its APIs. In SAC, 2014.

[20] S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo. Ifc inside: Retrofitting languages
with dynamic information flow control. htp://cowl.ws/ifc-inside.pdf, 2015.

[21] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. All your IFCException are
belong to us. In SP, 2013.

[22] B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras and (Co)Induction. EATCS, 62, 1997.

[23] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris. Infor-
mation flow control for standard OS abstractions. In SOSP, 2007.

[24] P. Li and S. Zdancewic. Arrows for secure information flow. TCS, 411(19), 2010.

[25] J. Matthews and R. B. Findler. Operational semantics for multi-language programs. In POPL,
2007.

[26] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java Information Flow.
Software release. Located at http://www.cs.cornell.edu/jif, 2001.

[27] I. Papagiannis, M. Migliavacca, D. M. Eyers, B. Sh, J. Bacon, and P. Pietzuch. Enforcing user
privacy in web applications using Erlang. In W2SP, 2010.

[28] W. Rafnsson and A. Sabelfeld. Secure multi-execution: fine-grained, declassification-aware, and
transparent. In CSF, 2013.

[29] A. Russo and A. Sabelfeld. Securing Interaction between threads and the scheduler. In CSFW,
2006.

[30] A. Russo, K. Claessen, and J. Hughes. A library for light-weight information-flow security in
Haskell. In Haskell, 2008.

[31] V. Simonet. The Flow Caml system. Software release at
http://cristal.inria.fr/~simonet/soft/flowcaml/, 2003.

[32] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.
In POPL, 1998.

[33] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information flow control
in Haskell. In Haskell, 2011.

[34] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières. Addressing covert
termination and timing channels in concurrent information flow systems. In ICFP, 2012.

[35] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic information flow control
in the presence of exceptions. Arxiv preprint arXiv:1207.1457, 2012.

[36] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo, and D. Mazières. Eliminating
cache-based timing attacks with instruction-based scheduling. In ESORICS, 2013.

[37] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp, and D. Mazières. Pro-
tecting users by confining JavaScript with COWL. In OSDI, 2014.

[38] A. Taly, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated analysis of security-critical
javascript apis. In SP, 2011.

[39] S. Tse and S. Zdancewic. Translating dependency into parametricity. In ICFP, 2004.

[40] D. Volpano and G. Smith. Eliminating covert flows with minimum typings. In CSFW, 1997.

[41] W3C. HTML5 web messaging. http://www.w3.org/TR/webmessaging/, 2012.

[42] E. Z. Yang and D. Mazières. Dynamic space limits for Haskell. In PLDI, 2014.

[43] A. Yip, N. Narula, M. Krohn, and R. Morris. Privacy-preserving browser-side scripting with
BFlow. In EuroSys, 2009.

[44] D. Zanarini, M. Jaskelioff, and A. Russo. Precise enforcement of confidentiality for reactive
systems. In CSF, 2013.

[45] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information flow explicit
in HiStar. In OSDI, 2006.

http://www.ecma.org/
htp://cowl.ws/ifc-inside.pdf
http://cristal.inria.fr/~simonet/soft/flowcaml/
http://www.w3.org/TR/webmessaging/

	 IFC Inside: Retrofitting Languages with Dynamic Information Flow Control

