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Abstract

We describe the semantics and implementation of a space limits
system for Haskell, which allows programmers to create resource
containers that enforce bounded resident memory usage at runtime.
Our system is distinguished by a clear allocator-pays semantics
drawn from previous experience with profiling in Haskell and an
implementation strategy which uses a block-structured heap to or-
ganize containers, allowing us to enforce limits with high accuracy.
To deal with the problem of deallocating data in a garbage col-
lected heap, we propose a novel taint-based mechanism that unifies
the existing practices of revocable pointers and killing threads in
order to reclaim memory. Our system is implemented in GHC, a
production-strength compiler for Haskell.

Categories and Subject Descriptors D.3.4 [Run-time environ-
ments]

General Terms Languages, Reliability, Security

Keywords Resource Limits, Profiling, Fault Tolerance, Haskell

1. Introduction

High-level languages encourage programmers to think about prob-
lems in abstract mathematical terms, which is often conducive
to concise, algorithmically correct solutions. Unfortunately, high-
level languages can also obscure the time and space requirements
of programs, making seemingly correct code unsuitable for the real
world. As an example, in e-commerce, an incorrect answer may be
preferable to a slow one [4]. As another example, many protocols,
including HTTP, specify no limits on the size of message fields. Yet
a web server that rejects RFC2616-compliant HTTP headers larger
than some arbitrary limit (e.g., 8 KB) is clearly preferable to one
that “correctly” parses multi-gigabyte headers after inducing vir-
tual memory paging. These examples demonstrate the importance
of a mechanism for bounding resource consumption.

Operating systems like Linux already provide resource limits
at the process-level. However, to take advantage of this support,
programs must be divided into separate processes—a heavy archi-
tectural penalty when an application does not normally use mul-
tiple processes. Furthermore, these processes are far more heavy-
weight than operating system threads or user-level threads: Google
Chrome, which uses separate processes per tab, requires 30 MB
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per tab, while Mozilla Firefox, which runs in a single process, only
requires 2 MB per tab [25].

The alternative is to employ sub-process resource containers
inside of the programming language. Past work has employed a
variety of mechanisms to implement resource containers in this
setting, from bytecode rewriting [3], to revocable pointers [10] to
completely separate heaps [1], to using the garbage collector to
directly trace the retainers of objects [17, 26]. The semantics of
these systems vary on a few key design points, including whether
or not the allocator or the retainer pays for objects and how one can
free a resource container that is no longer needed. One difficulty
that arises in garbage collected languages is the fact that a cross-
container reference can keep a container alive: the container cannot
be freed without violating memory safety.

This paper introduces a new point in the design space. Our
system utilizes a single garbage-collected heap and allows cross-
container references to be treated as normal references. The key
insight is that we do not need to modify the garbage collector
to support forcibly reclaiming objects. Instead, we conservatively
track which containers a thread may have access to via a mandatory
tainting mechanism. To reclaim a resource container, simply kill all
threads tainted with access to that container. To make our approach
practical, our API helps threads avoid excessive taint and takes ad-
vantage of Haskell’s purity. In particular, a thread may spawn “dis-
posable” subcomputations to compute over data in other resource
containers, the results of which can be read back without acquiring
taint by copying the object out of the container.

We have implemented our approach in GHC, the most popular
Haskell compiler. Haskell is a good example of a powerful, high-
level language that complicates reasoning about memory alloca-
tion. Our choice was motivated by several factors. First, the lan-
guage is ideal for formally specifying the semantics of resource
containers. To our knowledge, this has not been done before. These
semantics come by way of a previous cost semantics formalized
for GHC’s profiler [19], which tells us how resource containers
should work for lazy evaluation and higher-order functions. Sec-
ond, GHC uses a block-structured heap, which allows for an easy
implementation of resource containers, optimizing for the rapid al-
location and deallocation of containers. Finally, GHC has hardened
Haskell’s type system against malicious code with a feature called
Safe Haskell [24]. Resource containers provide immediate value
to Safe Haskell, which is already in production use to confine po-
tentially malicious third-party code [8] but until now could only
recover from heap overflow at the process granularity.

Our contributions are as follows. First, we introduce a new ap-
proach to resource containers. We describe an implementation for
Haskell and provide a precise semantics that accounts for lazy eval-
uation, higher-order functions, and exceptions. We provide a li-
brary to facilitate resource container revocation, built on manda-
tory tracking and control of reference propagation. We evaluate the
memory utilization and performance of our approach. Finally, we
comment on the applicability of our technique to other languages.



2. Resource limits

The goal of our resource limits system is to limit the memory usage
of untrusted or buggy pieces of code. Thus, a user should be able
to enforce resource limits on a piece of code in this manner:

rc <- newRC 400 {- 4KB pages of memory -}
withRC rc (... untrusted code ...)

Here, the user allocates a fresh resource container (newRC)
with a fixed limit of 400 pages of memory1 and runs a fragment
of code, attributing its memory usage to this container (withRC).
If the code exceeds the limit, a heap overflow exception is triggered.

As usual, the devil is in the details. It may be easy to say what
withRC should do with straight-line code, but what about code that
returns a function or a thunk that is evaluated outside the withRC
block? Furthermore, what does it mean to trigger a heap overflow
exception when a limit is exceeded? We start by discussing these
two aspects of our system; next, as one of our key contributions is a
semantics for resource containers, we describe a formal semantics
for our system.

Functions and thunks An allocator-pays model of resource us-
age usually involves a current resource container, to which costs
are charged. This current container changes when a user invokes
withRC. An important design choice is whether or not function
calls change the current resource container. In the case of a lazy
language, one must also decide if thunk evaluation should change
the current resource container.

We think the choice for thunks is clear: a thunk should run in
the same container it was originally allocated in. The reason for this
is predictability: a thunk may be simultaneously forced by several
threads, only one of which actually performs the evaluation. If we
did not revert the current container upon evaluation, the cost of
evaluating the thunk would be charged to the current container of
whichever thread won the race, resulting in a non-deterministic cost
attribution.

For functions, there are two choices: either functions change
the current resource container (lexical scoping), or they do not
(dynamic scoping). In the first case, it is unsafe to pass a function
to another container, as the user may repeatedly reinvoke your
function (which is allocating on your behalf) and induce a large
amount of memory usage. In the second case, it is unsafe to call an
untrusted function, as it may blow up and induce a large amount of
memory usage. The first choice offers users no recourse: functions
simply cannot be shared. However, in the second case, a container
can allocate a temporary subcontainer (paid out of its own budget)
to run the computation. Thus, our system adopts dynamic scoping.

It is no accident that our choices here closely match the cost
semantics utilized by GHC’s profiler [19]. Profiling and resource
limits both seek to answer the same question: “What is the resource
consumption of a cost center/resource container?” By adhering to
the existing cost semantics, developers can reason about resource
containers the same way they reason about code when they are
using a heap profiler.2

What happens when a resource limit is hit? Assuming that the
limit of a resource container has been reached, what should be
done? Experience with operating-system based resource limits sug-
gests that some sort of signal should be raised, which in garbage-

1 It would be relatively easy to build an abstraction layer which permits
relative resource limits (e.g., give one third of my limit to the created
containers). However, the raw unit of measure is implementation dependent:
the choice of 4KB pages in particular is motivated by our use of a block
structured heap, described in Section 4.3.
2 In fact, our very first implementation of this system directly reused GHC’s
profiling support.

e ::=
| lit Literal
| f a Application
| x Thunk
| K a Constructor
| op a Primitive

| case e of Kj xj → ej
j

Pattern match
| let x = rhs in e Let binding

rhs ::=
| λx .e Function
| peq Thunk
| K a Constructor

Figure 1. Syntax for simplified STG

collected languages has translated into killing threads. Killing
threads in a language like Java, however, is a very dangerous oper-
ation that can leave a system in a deadlocked state, as it does not
give a thread the opportunity to cleanup after itself. Haskell, on
the other hand, specifically has support for asynchronous excep-
tions [13], which are an excellent mechanism for delivering stack
overflow and heap overflow exceptions that respect the exception
handling stack. When a thread triggers a heap overflow, its excep-
tion handlers are invoked, giving it a chance to cleanup or recover
(the handler may even operate in a different resource container,
guaranteeing that it will run). This approach easily accommodates
multiple threads running under the same resource container. Fur-
thermore, existing support for masking asynchronous exceptions
enables a thread to temporarily ignore the fact that a resource limit
has been hit. Trusted code may decide to allocate beyond its re-
source limit to ensure a critical region completes.

2.1 Big-step cost semantics

We now give a formal cost semantics for resource containers.
Rather than give semantics for Haskell, we give semantics for an
intermediate language used by GHC called STG [12], which user
code is compiled into after optimization. Figure 1 describes the
syntax of STG. STG is a simple untyped lambda calculus, contain-
ing only function applications, constructors, pattern-matching over
constructors, let-bindings and thunks. It also includes domains of
literals (lit) and primitive operations (op); withRC and newRC are
considered primitive operations, and resource containers (rc) are
considered literals. For simplicity, we omit the limit argument from
newRC, as our semantics do not directly model resource consump-
tion. Functions, constructors and operators can have arbitrary arity,
so we simply notate a vector of arguments using an overline. We
use the identifiers f , g, h, r, x, y and z to represent variables, with
the convention that f , g and h are functions and r evaluates to an
rc. K ranges over data constructor names.

STG has a few restrictions that make it amenable for compila-
tion to machine code: lambdas occur only as the rhs of let-bindings,
constructor and primitive applications must be saturated (fully ap-
plied), and function arguments must be either literals or variables
(represented using a). We will say an rhs is a value v, if it is ei-
ther a constructor application or a lambda. Previous literature [12]
describes how to transform programs to obey these restrictions.
Thunks are written inside top corner brackets (p and q).

Our big-step cost semantics is stated in Figure 2 and is a mod-
ernized version of previous cost semantics by Sansom et al. [19]
extended for resource containers. This semantics only models the
evolution of the current resource container and the attribution of
costs; the small-step semantics in the next section handles excep-



Γ : lit ⇓rc Γ : lit
LIT

x
rc

′

7→ v in Γ

Γ : x ⇓rc Γ : x
WHNF

Γ : e ⇓
rc

′ ∆ : z

Γ[x
rc

′

7→ peq] : x ⇓rc ∆[x
rc

′

7→ z] : z
THUNK

Γ : e [ai/xi]
i
⇓rc ∆ : z

Γ[f
rc

′

7→ λxi
i.e] : f ai

i ⇓rc ∆ : z
APP

Γ : e ⇓rc ∆[y
rc

′

7→ Kk ak,i
i] : y ∆[y

rc
′

7→ Kk ak,i
i] : e′k [ak,i/xk,i]

i
⇓rc Θ : z

Γ : case e of Kj xj,i
i → e′j

j
⇓rc Θ : z

CASE

z fresh

Γ : K ai
i ⇓rc Γ[z

rc

7→ K ai
i] : z

CONAPP
y fresh Γ[y

rc

7→ rhs] : e [x/y] ⇓rc ∆ : z

Γ : let x = rhs in e ⇓rc ∆ : z
LET

rc′ fresh

Γ : newRC ⇓rc Γ : rc′
NEWRC

Γ : r ⇓rc ∆ : rc′ ∆ : f a ⇓
rc

′ Θ : z

Γ : withRC r f a ⇓rc Θ : z
WITHRC

Figure 2. Big-step cost semantics

tions and heap overflow. The basic transition is Γ : e ⇓rc ∆ : a,
which states that expression e with heap Γ transitions to a value or
literal a with new heap ∆, where the current resource container is rc.

Bindings on the heap x
rc

7→ hval are associated with a resource con-
tainer rc, stating that this container is being charged for the binding;
alternatively, one can consider the address x to reside in container
rc. We conflate heap locations with variables; heap values may be
any valid rhs or an indirection to another heap value (a nod to how
thunk update is actually implemented).

The most important thing these semantics model is how the cur-
rent resource container changes (otherwise, they are standard); allo-
cating operations (such as a let-binding) simply charge their alloca-
tions to the current resource container. As an example, consider the
THUNK rule. It states that a variable/heap pointer x which points to
a thunk e can be evaluated to a new heap pointer z (and the binding
x updated), if e evaluates to z with the current resource container rc’
(the container the thunk was charged to on the heap.) In compari-
son, the APP rule does not change the current resource container.

It is worth making a brief remark about the WITHRC rule,
which states withRC takes a resource container r along with ar-
guments f and a, rather than a single expression. There is a good
reason for this: withRC r ( f x) is illegal in STG: and one would
need to write let z = p f xq in withRC r z with a single-argument
withRC. However, this would not achieve the intended effect, as
f x is a thunk associated with the parent resource container, and
would revert the resource container immediately on entry.

We can give the following guarantee: modulo newRC and
withRC, code running in one resource container cannot induce un-
bounded resource usage in another container, as long as there are
no infinite thunks reachable from other containers. In Section 4.5,
we describe a way to deal with infinite global thunks.

2.2 Small-step operational semantics

While the big-step semantics provide a clear picture of how the
current resource container changes, we also need to reason about
how resource containers interact with exceptions. To do this, we
first recast the previous cost-semantics as a small-step operational
semantics in Figure 3, with an explicit stack.

The form of transitions is Γ,s,C −→ Γ
′,s′,C′, where s points

to the stack in the heap (stacks constitute resource usage!), and
C is the program code. A program code is either return a, which
states that the program is returning the value or literal a to the top
continuation on the stack, or eval e, which means that the program
is evaluating some expression. While we don’t model multiple

threads explicitly, a thread is merely a stack pointer and a program
code. The allocated condition indicates that a variable is fresh.

A stack S is a sequence of stack frames f1 ⊲ f2 . . . ⊲ fn which
grows to the right. Stack growth constitutes allocation. A stack
frame can be an update frame upd x (given a return value z, update x

to point to z, and return z), a continuation case of alt (given a return
value, case-match on it and continue evaluation in the appropriate
branch), an application frame ap ai

i (given a return value f , apply
it to the arguments ai

i), or a stack link link s, which points to
a linked stack chunk with which to continue execution when the
current chunk underflows. Technically, the arguments of functions
should also be stored on the stack, but for simplicity we continue to
denote binding using substitution and do not explicitly model the
argument stack.

There are two things to note about the new semantics. First,
the current resource container is now implicitly represented as
the resource container of the current stack chunk; thus, withRC
allocates a new stack chunk in the desired resource container and
links it to the previous chunk in the old container (see Section 4.4
for an optimization). When a stack chunk underflows, the current
resource container resets to the current container of the previous
stack chunk. Second, when a thunk is entered, the thunk is replaced
with a placeholder • known as a black hole [18]. As there is no rule
for evaluating •, a black hole blocks any other thread that attempts
to force it until the thunk is updated.

In Figure 4, we introduce transition rules for synchronous and
asynchronous exceptions by adding a corresponding pair of pro-
gram codes, raisew w0, which represents a synchronous exception
w being processed up the stack, and suspendw e, which represents
an asynchronous exception being processed up the stack. We use
the convention that w indicates the heap location of an exception
value and w0 indicates the heap location of an exception-raising
thunk. There is also a new stack frame, catch h (catch an excep-
tion and run handler h). Synchronous exceptions are thrown, while
asynchronous ones are non-deterministically induced by external
events (which we indicate by placing a w over the transition arrow).

Synchronous and asynchronous exceptions are handled nearly
identically, except in how they handle update frames. A normal ex-
ception overwrites the thunk with a closure w0 which always throws
an exception: this works because we know that any future attempt
to evaluate this thunk will always cause an exception. However, in
the case of an asynchronous exception, a second attempt to evalu-
ate the thunk may succeed; thus, we should record any partial work
we may have achieved in evaluating the thunk for next time [13].



Γ,s,eval x −→ Γ,s, return x (x
rc

′

7→ v in Γ)

Γ,s,eval lit −→ Γ,s, return lit

Γ[x
rc

′

7→ peq],s,eval x −→ Γ[x
rc

′

7→ •, s′
rc

′

7→ link s⊲upd x],s′,eval e

Γ[x
rc

7→ •, s
rc

7→ S⊲upd x],s, return z −→ Γ[x
rc

7→ z, s
rc

7→ S],s, return z

Γ[s
rc

7→ S],s,eval K ai
i −→ Γ[s

rc

7→ S, z
rc

7→ K ai
i],s, return z (z allocated)

Γ[s
rc

7→ S],s,eval f ai
i −→ Γ[s
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7→ S⊲ap ai
i],s,eval f

Γ[s
rc

7→ S⊲ap ai
i],s, return f −→ Γ[s

rc

7→ S],s,eval e [ai/xi]
i

(f
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′

7→ λxi
i.e in Γ)

Γ[s
rc

7→ S],s,eval let x = rhs in e −→ Γ[s
rc

7→ S, z
rc

7→ rhs],s,eval e [z/x] (z allocated)

Γ[s
rc

7→ S],s,eval case e of altj
j

−→ Γ[s
rc

7→ S⊲ case of altj
j
],s,eval e

Γ[s
rc

7→ S⊲ case of Kj xj,i
i → e′j

j
],s, return z −→ Γ[s

rc

7→ S],s,eval e′k [ak,i/xk,i]
i

(z
rc

′

7→ Kk ak,i
i in Γ)

Γ[s
rc

7→ S, s′
rc

′

7→ link s],s′, return z −→ Γ[s
rc

7→ S],s, return z

Γ,s,eval newRC −→ Γ,s, return rc′ (rc′ allocated)

Γ,s,eval withRC rc′ f a −→ Γ[s′
rc

′

7→ link s],s′,eval f a

Figure 3. Small-step operational semantics

Γ[s
rc

7→ S],s,eval catch f x h −→ Γ[s
rc

7→ S⊲ catch h],s,eval f x

Γ[s
rc

7→ S⊲ catch h],s, return z −→ Γ[s
rc

7→ S],s, return z

Γ[s
rc

7→ S],s,eval throw w −→ Γ[s
rc

7→ S, w0
rc

7→ pthrow wq],s, raisew w0 (w0 allocated)

Γ[x
rc

7→ •, s
rc

7→ S⊲upd x],s, raisew w0 −→ Γ[x
rc

7→ w0, s
rc

7→ S],s, raisew w0

Γ[s
rc

7→ S⊲ case of altj
j
],s, raisew w0 −→ Γ[s

rc

7→ S],s, raisew w0

Γ[s
rc

7→ S, s′
rc

′

7→ link s],s′, raisew w0 −→ Γ[s
rc

7→ S],s, raisew w0

Γ[s
rc

7→ S⊲ catch h],s, raisew w0 −→ Γ[s
rc

7→ S],s,eval h w

Γ,s,eval e
w

−→ Γ,s,suspendw e

Γ,s, return z
w

−→ Γ,s,suspendw z

Γ[x
rc

7→ •, s
rc

7→ S⊲upd x],s,suspendw e −→ Γ[x
rc

7→ z, z
rc

7→ peq, s
rc

7→ S],s,suspendw z (z allocated)

Γ[s
rc

7→ S⊲ case of altj
j
],s,suspendw e −→ Γ[s

rc

7→ S],s,suspendw case e of altj
j

Γ[s
rc

7→ S, s′
rc

′

7→ link s],s′,suspendw e −→ Γ[s
rc

7→ S],s,suspendw e

Γ[s
rc

7→ S⊲ catch h],s,suspendw e −→ Γ[s
rc

7→ S],s,eval h w

Γ[x
rc

7→ •, s
rc

7→ S⊲upd x],s,suspendw′ e
w

−→ Γ[x
rc

7→ w0, s
rc

7→ S],s, raisew w0 ( w0 7→pthrow wq
w7→heapOverflow in Γ)

Figure 4. Small-step rules for synchronous and asynchronous exceptions

The rules for asynchronous exceptions automatically give us a
rule for heap overflow, which is an asynchronous exception. Fur-
thermore, we can nearly always throw an asynchronous excep-
tion rather than take a transition that requires allocation. The only
case where this is not true is when processing update frames for
asynchronous exceptions, which allocate in order to move the sus-
pended computation from the stack to the heap. Thus, we intro-
duce one more rule, below the dashed line: if we cannot allocate
space for this suspended computation, we instead update the thunk
to point to a global exception thunk for heap overflows. This behav-
ior can be justified by observing that any other thread which might

force the thunk must allocate into the (overflowed) heap to store the
result, inducing a heap overflow exception. We can now show, for
these semantics:

Theorem 2.1. For any small-step transition that may induce heap
allocation (indicated by allocated or by a new stack frame), it is
always a valid step to instead induce a heapOverflow asynchronous
exception.

Proof. By case-analysis over program codes: eval and return can
directly transition to suspend, no transition rules from raise allo-
cate, and suspend is handled by the rule below the dashed line.



Theorem 2.2. Progress. When a thread heap overflows, it is guar-

anteed to progress to the top-most catch frame.3

Proof. Induction on the size of the stack: all transitions after an
asynchronous exception decrease their stack.

These guarantees do not hold in the presence of exception mask-
ing. Exception masking can be introduced into these semantics by
adding one additional piece of thread state. When exceptions are
masked, the w rules are not applicable. Thus, masking offers a
safety escape from resource limits: when a thread is masked, we al-
ways fulfill its allocation requests, even when the current resource
container has exceeded its limit.

3. Reclamation

We have described how to bound memory allocation by a container,
but we have not said how to reclaim the memory consumed by a
container. In a garbage collected language, one cannot simply free
a container, since doing so would result in dangling pointers. How-
ever, it would be a severe bug if a user could slowly leak memory
by retaining pointers to data that should be garbage collected—
especially if this is data that other users are paying for!

There are generally two approaches to deallocating objects in
a memory-safe, garbage-collected language: one can use special
revocable pointers that raise an exception on any attempt to access
a deallocated object, or one can simply eliminate all reachable
pointers to the object, which requires killing threads holding such
pointers. Each approach has been individually proposed in the
literature and offers different trade-offs.

The first approach requires that all cross-container references
be revocable pointers. To avoid leaking plain references, any ac-
cess to a revocable pointer must be mediated by functions that copy
data and/or return more revocable pointers. Revoking pointers is a
natural way to think about reclamation from an operating systems
perspective, where data is explicitly transferred across protection
boundaries. However, this style can be awkward in a programming
language. Worse, a functional language such as Haskell encourages
programming with immutable data; transforming a previously ex-
amined immutable value into an exception would be quite discon-
certing for functional programmers.

The second approach requires identifying and killing all threads
that might have access to the data one wants to deallocate. Here, it
is members of the root set that are explicitly revoked, as opposed
to direct pointers to deallocated objects. Thus, no special support
is necessary for cross-container references. However, under this
scheme, a thread working with cross-container data has to be very
careful, as at any moment, it may be killed due to a resource-
container deallocation.

Given that these two approaches have different benefits, a good
solution should support both! Hence, we conservatively track
which resource containers a thread may have access to. How-
ever, we also introduce special revocable resource-container refer-
ences, called RCRefs, which mediate inter-thread communication.
A thread can dereference an RCRef in one of two ways: it may
follow the pointer normally, thereby “tainting” itself as a potential
retainer of the object’s resource containers; alternatively, it may opt
to copy the value into its own resource container.

To understand our API, a small amount of background in
Haskell is necessary. The next subsection discusses some basic
aspects of Haskell’s design. We then present the details of our recla-
mation mechanism. Finally, we discuss how our solution dovetails
nicely with information flow control, a technique frequently used
to confine untrusted Haskell code.

3 However, the catch handler may fail to terminate: thus, exception handlers
which can catch heap overflows should be considered trusted code.

3.1 Haskell background

Haskell is a pure functional language, meaning variables are im-
mutable and functions are like mathematical functions, determinis-
tic and without side-effects. Haskell does allow IO, but the fact that
a computation performs IO must be reflected in its type. For exam-
ple, a value of type Char represents a particular, immutable Uni-
code code point. By contrast, a value of type IO Char represents
some computation that, when executed, may produce side effects
and will return a Char. An example of such a computation in the
system library is getChar :: IO Char (the keyword :: specifies
the type of a symbol), which reads a character from standard in-
put and returns it. Syntactic sugar facilitates hooking together IO
computations, e.g.:

copyChar :: IO () -- type () is unit (like void)
copyChar = do c <- getChar

putChar c

An important point is that IO computations can invoke pure
functions, while pure functions cannot cause IO to happen; this is
enforced statically by the type checker. Haskell does have mutable
values, but these can only be manipulated from within IO computa-
tions. For example, the system library provides the following three
functions to allocate, read, and write mutable values:

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

Finally, type IO is an instance of a typeclass called Monad. The
syntactic sugar for hooking together IO computations actually ap-
plies to any instance of Monad. Hence, it is common for program-
mers to implement new IO-like types and make them monads. In-
troducing monads is further encouraged by the fact that many li-
brary functions are polymorphic over all monads.

A common technique for constructing monads is to define a new
type that internally contains IO computations, effectively “wrap-
ping” IO in another level of type constructor. Through appropriate
use of modularity, such wrapped versions of IO can expose only
a subset of available IO operations to code. Such restricted mon-
ads are typically how people safely confine untrusted third-party
Haskell code [23, 24].

3.2 Revocation API

The minimal set of threads to kill to reclaim a container is precisely
the set of threads from which the container is reachable. One might
imagine calculating this set during garbage collection; indeed Sec-
tion 6.2 discusses previous systems which do this. However, this
approach can lead to a subtle bug: suppose that a thread temporarily
references another container, intending to drop the reference when
it is done processing the data. If the thread fails to drop a single
reference, it will be summarily killed when the data is reclaimed;
worse, the program may give the impression of working correctly,
if the thread drops all of the references most of the time.

Instead we opt for a conservative scheme which “fails fast”.
Every thread is associated with a set of containers to which it
may have references, called the current label. A thread inherits
the label of the thread that spawned it. When a thread changes
container using withRC, the new container is permanently added
to the thread’s label. Similarly, when a thread reads an RCRef, the
RCRef’s container is added to the current label. Critically, the label
of an RCRef is immutable, ensuring that a developer can always
tell what containers its data may depend on. Moreover, using an
appropriately defined container monad, called CM, the label can be
computed with no special assistance from the language runtime.

Figure 5 shows a subset of the API available in the CM Monad. A
computation in the container monad can be run using startCM, and



startCM :: CM () -> IO ()
withRC :: RC -> CM a -> CM a -- lifted from IO
newRC :: Int -> CM RC -- lifted from IO
killRC :: RC -> CM ()

forkRC :: RCSet -> CM a -> CM (RCResult a)
readRCResult :: RCResult a -> CM a
copyRCResult :: RCResult a -> Transfer a -> CM a

newRCIORef :: a -> RCSet -> CM (RCIORef a)
readRCIORef :: RCIORef a -> CM a
copyRCIORef :: RCIORef a -> Transfer a -> CM a
writeRCIORef :: RCIORef a -> a -> CM ()

Figure 5. Subset of revocation API.

we provide variants of newRC and withRC specialized for the CM
monad. In particular, withRC rc adds rc to the current label of a
thread. We also provide a new function, killRC, which deallocates
a resource container by revoking any RCRefs to it and killing all
threads that could retain references to it. Here is a simple example:

startCM (do rc <- newRC 400
withRC rc (... expr ...)
killRC rc
...)

This code seems to do some computation and then free the
container rc. Surprisingly, as withRC permanently added rc to the
current label of the main thread, killRC will kill itself, and the
rest of the code is never run. To avoid this situation, we provide the
function forkRC, which spawns a new thread—with its own current
label—to run the computation.4 forkRC takes an argument rcset,
which states what containers the result of the thread may have a
dependence on and returns an RCResult, which is simply an RCRef
that also performs thread synchronization (e.g., an IVar). Now, we
could simply just read the result with readRCResult, tainting the
main thread with the containers in rcset—however, this would
defeat the point of forking in the first place. Alternatively, we could
copy the result to our original resource container and avoid tainting
the container completely. This is achieved using copyRCResult
with a transfer function which describes how to copy the argument.
A trusted library provides combinators for copying primitive data
(e.g., trPrim for boxed integers) as well as more complex data
(e.g., trList n t for lists, where n is the maximum number of
elements to copy and t is the transfer function to apply to items).

Thus, the correct version of our example looks like this:

r <- forkRC rcset (withRC rc (... expr ...))
x <- copyRCResult r trPrim
killRC rc

Generally, one wants to take cross-container data (possibly very
large) and convert it into a small result, which is then copied back
to the original thread. As an example, suppose we wanted to record
the average size of HTTP requests, where each request lives in its
own resource container. The length calculation requires all of the
HTTP request, but only a single integer needs to be copied back to
the main thread.

RCResult is not the only mechanism by which interthread com-
munication can occur: any existing communication primitive can
be augmented with RCRef to be incorporated into the CM monad.
As a simple example, we consider IORef, which is replaced with

4 It’s not strictly necessary to create a new thread; however, heap overflow
exceptions should not cross over the forkRC boundary.

RCIORef. Like forkRC, creating an RCIORef with newRCIORef
requires the set of resource containers the RCIORef is allowed
to retain. readRCIORef adds this set to the label of any thread
reading the reference; copyRCIORef copies the value into the cur-
rent resource container. However, the most interesting operation on
RCIORef is writeRCIORef, which performs an additional check to
ensure the current thread’s label is a subset of the RCIORef’s. Oth-
erwise, the written value might depend on a container the reference
is not permitted to retain, and the write must be rejected. In our
library, we also provide RCMVar, which is the container-aware ver-
sion of MVars, a simple abstraction for interthread communication
and synchronization.

3.3 Information flow control

We have presented this reclamation API in isolation for the sake of
understandability; however, this interface has a close relationship
to information flow control (IFC), a technique used for managing
the propagation of sensitive information. In an IFC system, secu-
rity policies are captured by labels, which dictate how sensitive
(secrecy) or trusted (integrity) a piece of data is. To give a concrete
example of an integrity policy, suppose we have a database which
should only allow writes from Alice or Bob: its label is the set of
principals {Alice, Bob}. Alice can give a piece of data the {Alice}
label by endorsing it. We now say that a label l may flow to l′ if
l ⊆ l′: thus data Alice endorses can flow to the database, but not
data Carl endorses.5

Our resource reclamation scheme is, in fact, an information flow
control scheme which enforces an integrity policy: principals corre-
spond to resource containers, labels correspond to sets of reachable
containers, and endorsement corresponds to a copy operation. In
particular, the CM Monad is merely a type-specialized version of an
existing, publicly-available information flow control monad called
LIO [23]. Taking advantage of this correspondence, our implemen-
tation of the CM monad is closely modeled after LIO, with some
simplifications to make it easier to use. An advantage of building
on LIO is that it is one of the more widely-used Haskell libraries for
confining untrusted code, allowing us to draw on prior experience
designing the API and semantics. Additionally, adopting these se-
mantics gives us a proof of noninterference, which translates into
an assurance that our thread tracking is accurate.

4. Implementation

Our implementation utilizes GHC’s block-structured heap, so we
first give a brief description of it, and then discuss our implementa-
tion in more detail. We also discuss three incidental details related
to implementation.

4.1 Block-structured heap

The conventional design for a garbage collector is to allocate a few
large, contiguous blocks of memory to serve as the heap. GHC’s
block-structured heap [5, 14, 21] is an alternative to this scheme,
which overcomes some of the inflexibilities of a large chunks of
memory. The idea is to divide memory into fixed-size B-byte blocks
(in our case, B is 4 KB). These blocks are linked together in order
to provide memory for the heap. Since most objects are much
smaller than the size of a block, these linked blocks do not have
to be contiguous. When a heap runs out of space, more blocks can
be easily chained onto it. For example, the nursery, in which new
objects are allocated, is simply a chain of blocks.

Blocks are associated with a block descriptor, which contains
information about the block such as what generation it belongs
to, how full it is, etc. Block descriptors are placed in an easy-to-

5 These labels can be generalized to be arbitrary propositional formu-
las [22], with our sets forming disjunctions of principals.



calculate location: any pointer into a block can be converted into
a pointer for the block descriptor with a few instructions. We can
maintain contiguous blocks by collecting block descriptors together
in a block descriptor table. Block descriptor tables and blocks are
allocated together in a unit called a megablock (1 MB in our case);
if an object exceeds the size of a megablock, it can spill into the
next megablock, although the remaining space is unusable (as the
block descriptor table has been overwritten).

GHC currently uses the block-structured heap to good effect
for a parallel generational-copying garbage collector [14]. This
garbage collector utilizes blocks as the unit of work for garbage
collection; as the copying collector operates, it copies objects into
“todo blocks”, which may then get passed to other GC threads for
further scavenging, to look for more live objects.

4.2 Resource containers are chains of blocks

The flexibility of the block-structured heap allows for a direct im-
plementation resource containers: a block of memory is marked as
belonging to a container in its block descriptor.6 We maintain the
invariant that the owner of a nursery is the current resource con-
tainer. If the current resource container changes, we swap the nurs-
ery blocks with a set of nursery blocks stored in the new resource
container.7 There is one extra detail with respect to lazy evaluation:
when evaluating a thunk, we need to determine which container
owns this thunk. This can be done by calculating the block descrip-
tor of the thunk, which contains a reference to the resource con-
tainer. This costs only one extra memory dereference, and experi-
mentally (Section 5.2), we’ve found paying this dereference every
thunk evaluation to be relatively cheap.

In fact, the primary complication is adjusting the garbage col-
lector to preserve the containers of objects. GHC utilizes a copying
generational garbage collector, which operates by repeatedly scav-
enging the “todo blocks” associated with each generation, look-
ing for more live objects to copy into the to-generation. With con-
tainers, every resource container has a “todo block” (multiplied by
the number of generations) which live objects are copied into. Par-
tially filled blocks are tracked using a scan stack, [9] and once these
blocks fill up, they can be added to the pool of work available for
the parallel work-stealing collector.

4.3 Resource limits are enforced during block allocation

Rather than check if a resource limit has been exceeded at every al-
location, we instead perform resource limit checks when blocks are
allocated. Is this a good metric? It will certainly over-estimate the
space used, compared to the actual space occupied by live objects.
On the other hand, in a garbage collected language, the live object
residency is only known after a garbage collection; in the case of a
generational collector, it is only known after a major garbage col-
lection. Using blocks as our metric also has the singular advantage
of accounting for space wasted due to heap fragmentation (some
relevant measurements can be found in Section 5.) And, of course,
interposing at the block allocation layer is a lot simpler than inter-
posing at the general allocation layer.

Running out of blocks for a container is very similar to an out-
of-memory event. However, we have considerably more flexibility,
as we are not actually out-of-memory and can comfortably maneu-
ver ourselves to a desired state. From our experience implementing

6 Our system does not track memory that does not live on the heap (e.g.,
malloced memory from an FFI binding)—functions which provide access to
these resources are expected to do manual accounting. This does not mean
that all FFI code is untracked: for example, arbitrary precision integers in
Haskell are stored on the heap and are accounted properly.
7 In a multithreaded setting, each container maintains a set of nursery blocks
per thread, so independent threads can switch into the same container
without synchronizing.

these checks for GHC, we can classify these heap overflows into a
few cases:

• The block was explicitly requested by user code, by way of
an allocation of an object. These cases can be handled simply:
reject the request and raise a heap-overflow exception.

• The block was requested, but it may not be appropriate to
immediately raise an exception. When code is in a critical
region, exceptions may be masked, deferring any asynchronous
exceptions. In this case, we fulfill the request, and raise a heap
overflow exception when the mask is lifted.

• The block was requested during the course of garbage collec-
tion to serve as the to-space for an object of a container. In this
case, there is no thread that was directly responsible for trigger-
ing the limit. Instead, we mark the resource container as killed
and empty the nursery. The next time any thread in the container
allocates, it discovers that there is no memory left in the nurs-
ery. Instead of requesting a GC, however, it will simply trigger
an asynchronous exception.

4.4 Optimizing stacks

Stack chunks are usually preallocated contiguous blocks of mem-
ory which have extra space for new stack frames. In our formal
model, we suggested that a new stack chunk be allocated when-
ever we enter a thunk or invoke withRC. This can be quite expen-
sive, since thunk entry is quite common in lazy programs. A sim-
ple optimization is to not allocate a new stack chunk when the re-
source container changes (recording the change separately). When
the thread ends up needing to allocate a new stack chunk, the new
stack chunk will be properly attributed; similarly, if a stack is reified
due to an asynchronous exception, the new thunk will be charged
to the appropriate container.

Some costs will get misattributed: the resource container which
originally allocated the stack chunk may pay for other container’s
stack frames. The inaccuracy is small: usually, the space used by
stacks is temporary and quite small (by default, GHC 7.6 enforces
a maximum stack size of 8M). Furthermore, an attacker seeking
to inflate the memory usage of another container would need to
convince the victim to repeatedly enter into the adversarial code
from their own stack: any single thunk can waste the remainder
of the stack chunk, but it cannot cause the caller to allocate more
memory.

4.5 Constant-applicative forms

A constant-applicative form (CAF) is frequently described as a top-
level value defined in a program, which is allocated statically in
the program text, rather than at runtime during program execution.
For example, the expression someGlobal = 25 would be consid-
ered a CAF. Who is responsible for having allocated a CAF? We
place CAFs in a static resource container, separate from the rest
of the program. After all, they are only ever evaluated once, and it
shouldn’t matter who ends up evaluating them.

In some circumstances, however, CAFs can use up quite a lot
of resources. A common pattern in Haskell is to use a lazy infi-
nite data-structure to represent data which is conceptually infinite
(e.g., a table of prime numbers). Unfortunately, these infinite data
structures can induce infinite allocation when they are fully forced.
To combat this situation, we developed a tool which looks through
all of the CAFs exported by a program and speculatively evaluates
them to detect infinite or very large CAFs. When the time it takes
to fully evaluate a CAF is longer than some threshold, we replace it
with a non-updatable thunk (a zero-arity function); untrusted users
of the CAF now pay for the execution of that code and no shar-
ing occurs. Another possibility might be to offer more control over



what resource container a CAF is placed in; this works well when
code is being dynamically loaded.

4.6 Interaction with the optimizer

One challenge with working with a highly optimizing compiler in
a non-strict language is that the optimizer may cause costs to be at-
tribute to containers differently from what you might expect. While
attribution is clear in post-optimization STG (the intermediate rep-
resentation), users of Haskell do not generally write STG directly.
To see what may go wrong, consider a simple program:

rc <- newRC 100
x <- readInput
withRC rc $ do

print (x * x)

The intent of the program is to attribute the cost of x * x
to the resource container rc. However, the container associated
with x * x is not actually well defined. An aggressive compiler
will notice that x * x is a pure computation and lift it as far up
lexically as possible (in hopes of exposing some other optimization
opportunities), resulting in this code:

rc <- newRC 100
x <- readInput
let r = x * x -- ***
withRC rc $ do

print r

When this program is run, r will not be charged to rc! Indeed,
out of the box, withRC only guarantees correct attribution with
respect to monadic actions, which enforce ordering.

An obvious fix is to convert withRC into a special form, so
that it is treated specially by the optimizer, e.g., as is employed for
profiling with annotations. There were two reasons why we did not
use this design. First, this approach gives up composability: it is no
longer possible to create larger combinators using withRC. While
lack of composability is not a big deal for profiling annotations, it is
important that users can build their own libraries around our API.
Second, GHC implements semantics-preserving optimizations by
duplicating these annotations as necessary; it is much harder to
safely duplicate proper function calls with arguments, and the most
plausible implementation would probably turn off optimizations
around withRC.

Thus, we instead require programmers to rewrite their code
so that the free variables of a computation are threaded through
withRC1, which is a built-in function that is opaque to the opti-
mizer:

withRC1 :: RC -> a -> (a -> CM b) -> CM b

rc <- newRC 100
x <- readInput
withRC1 rc x $ \x’ -> do

print (x’ * x’)

The optimizer cannot “see” that x’ is the same as x: all it sees
is a function which (lazily) takes a variable as an argument, and
produces another another object.

5. Evaluation

5.1 Correctness

In order to show that resource limits were effective at bounding
memory usage, we ran a variety of allocating programs with various
resource limits and measured the memory usage of the programs.
By “memory usage”, we mean two things:

1. The self-reported heap residency estimate, i.e., the space pro-
ductively taken up by live objects.8

2. The true memory usage, as seen by the operating system. This
quantity will generally be higher than heap residency, as it ac-
counts for heap fragmentation, temporary blocks of memory al-
located to perform garbage collection and other miscellaneous
allocation. We collected this information using Valgrind Massif
(an external heap profiler) and GHC’s internally reported num-
ber of allocated blocks (we found these two metrics to be nearly
equal in all of our experiments).

In Figure 6, we report how our resource limits system scaled up
with successively larger resource limits, on a combination of differ-
ent programs. opl and tree were programs we found on Stack Over-
flow, where the authors had needed help debugging a space leak in
their programs.9 suml is a program that sums a list of integers using
a linear amount of heap-allocated stack. block and megablock were
synthetic programs constructed to repeatedly allocate data greater
than the block size (4k) and greater than the megablock size (1M).
Finally, ghc tests resource limits on a proper, real-world system.
Our program compiled the test case for bug #7428, which induces
an exponential space blow-up in the optimizer.10

The graphs can be interpreted as follows: the x-axis indicates
the resource limit we set, whereas the y-axis indicates the actual
memory usage. Each vertical line represents a data point, where the
top of the line indicates the true memory usage, and the bottom of
the line indicates the self-reported heap residency upper bound. We
normalized both these numbers against a baseline process which
did not do anything, to discard fixed overhead of the GHC runtime.
The graphs include two slope lines: the light gray line plots actual
memory usage to the resource limit one-to-one, while the dark line
plots them two-to-one. These graphs demonstrate some interesting
behavior about our resource limits system:

Garbage collection is privileged As we can see, sometimes the
true memory usage exceeds the resource limit, although it never ex-
ceeds twice the resource limit. This is because our implementation
allows containers to exceed their specified resource limit during
garbage collection. As a copying garbage collector may require up
to twice as much memory as the size of its heap to do collection,
we see some programs (e.g. suml) which can exceed their limit by
twice as much. Fortunately, this is only temporary, as after garbage
collection the usage returns to previous levels (or better), and use
of a different type of garbage collector (for instance, a compact-
ing collector) would eliminate this entirely. If a major garbage col-
lection uses a lot of space, it can result in the quantized behavior
you can see in opl, tree and ghc, where programs allocated a lot
of memory during a major GC, exceeding the resource limit by a
large amount.

Heap fragmentation is properly attributed In megablock, we
see the true utilization of the heap is far worse than the resource
limit. As we mentioned previously, block structured heaps cope
poorly with allocations greater than a megablock, because there
is no way to use the extra space at the tail end of a megablock
group (fragmentation). However, because we count this wasted
space towards the container, a program cannot skirt its resource
limit by inducing bad heap fragmentation.

8 Why an estimate? Residency can only be calculated accurately after a
major garbage collection that traverses the entire heap. However, we can
provide an upper bound after minor collections by assuming all data that
was live in an old generation continues to be live.
9 http://stackoverflow.com/questions/3190098/ and http://
stackoverflow.com/questions/5552433/
10 http://ghc.haskell.org/trac/ghc/ticket/7428



opl suml tree ghc block megablock

300 M

600 M

900 M

1200 M

300 M 600 M 300 M 600 M 300 M 600 M 300 M 600 M 300 M 600 M 300 M 600 M

Figure 6. Resource limit accuracy, where x-axis records the limit set and y-axis records the heap residency and the true memory used.

Program Allocs Time Elapsed TotalMem

circsim +0.0% +3.2% +3.1% -5.0%
constraints +0.0% +2.8% +2.9% +0.0%

fibheaps +0.2% +2.9% +2.9% -0.6%
fulsom +0.0% +2.1% +2.1% -5.5%

gc_bench +0.0% +0.9% +0.9% +0.0%
happy +0.9% +5.4% +5.5% +0.5%

hash +0.0% +6.4% +6.3% +0.0%
lcss +11.2% +5.0% +4.9% +1.9%

mutstore1 +0.0% +1.3% +1.3% +3.4%
mutstore2 +0.0% -0.2% -0.3% -0.6%

power +0.0% +3.1% +2.9% +2.1%
spellcheck +0.0% +3.3% +4.0% +0.0%

Table 1. Garbage collector overhead by nofib

5.2 Overhead

Enforcing Resource limits requires modifications to code genera-
tion as well as the garbage collector, which incurs overhead even
when resource limits are not being used. To quantify this overhead,
we compared our resource limits to a mostly vanilla11 checkout
of GHC HEAD using the nofib benchmark suite [16]. Specifically,
we tested against the garbage collector tests, which are designed to
stress-test the storage manager. Our experiments were conducted
on a machine with two dual-core Intel Xeon E5620 (2.4Ghz) pro-
cessors and 48GB of RAM.

Our experiments are shown in Table 1. Binary size change is
omitted from the figure, but we consistently pay on the order of
a 14–15%; the primary expense here is the extra code we need
to check if a resource container has changed upon thunk entry.
However, there is only a modest performance impact of 3–5%, as
compared to mainline GHC. This is not quite good enough to turn
on by default, but it is certainly close.

5.3 Applications

Finally, we ran experiments on a few nontrivial programs. Our first
program was a game server for the iterated prisoners dilemma,
where agents were implemented as threads limited to 2M of mem-
ory which could transmit over a channel a boolean indicating coop-
erate/defect, and then read out the choice of their opponent. We im-
plemented a few strategies, as well as a buggy strategy that leaked
memory. Every major GC, we then sampled the heap residency and
the actual memory usage (GHC-reported); a representative run can
be seen in Figure 7, using the same conventions as the graphs in
Figure 6, except that the x-axis varies over time. There are two

11 In the process of developing our system, we also implemented a generic
optimization for the collector which improved GC performance by about
5%. Since this optimization is not specific to our system, we included it in
the baseline comparison.
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Figure 7. Memory usage in a single run of the prisoner’s dilemma
server, sampled over major GCs.

Conns RC RC disabled Vanilla

10 2,511.7 2,515.2 2,514.5
50 12,271.3 12,311.2 12,351.3

100 19,891.2 20,756.2 20,885.6
1000 18,484.0 22,434.5 23,104.8

Table 2. Happstack measurements (requests per second)

things to note about the graph: first, the spikes correspond to the
six times the buggy strategy was run (and killed for exceeding its
resource limit); second, there was no memory leakage, as we were
able to completely reclaim the resources allocated from each run.

Our second program was Happstack 7.3.1, an existing open-
source web server for Haskell, which had a bug in its request parser,
wherein it would happily accept infinite HTTP headers in its default
configuration. Fixing this bug was a simple three-line modification
to the source code to apply a resource container per connection,
which caused Happstack to correctly terminate the bad connection.
We then tested the overhead of resource containers with a simple
benchmark and httperf --rate=1000 --burst-length=10,
varying the number of simultaneous connections we attempted,
carried out on the same machine as the overhead experiments. We
only used a single core for the webserver. Table 2 shows results for
Happstack with resource containers and without resource contain-
ers. We also included a baseline “vanilla” measurement taken with
stock GHC 7.8RC1. This figure shows that there is some slowdown
when there are a large number of resource containers. This is due
to an initialization phase at the beginning of every minor garbage
collection which takes time linear in the number of live containers.
We believe it should be possible to further reduce this cost.



6. Related work

Resource limits for untrusted code have been well-studied in a
variety of settings, although with much less coverage for functional
programming languages.

6.1 Operating systems

Starting with mechanisms as simple as the setrlimit system call,
limits have long been supported by POSIX-style operating sys-
tems. While these systems usually operate on a coarse-grained level
(managing pages of memory rather than individual heap objects),
they still elucidate many of the high level issues that come with
enforcing resource limits.

For example, the need for an abstract entity to charge costs to
is well recognized; many systems define some equivalent of a cost-
center rather than tie resource consumption to processes. Resource
containers [2], for example, were a hierarchical mechanism for
enforcing limits on resources, especially the CPU.

HiStar [27] organizes space usage into a hierarchy of containers
with quotas. Any object not reachable from the root container is
garbage collected. Containers are charged for the sum of the quotas
of all objects they contain. When multiple containers have hard
links to the same object, each is separately charged for the full cost
of the object. Any object so linked to multiple containers must have
a fixed quota; otherwise, one process can too easily induce arbitrary
quota usage in a container belonging to another process to whom it
has granted the object.

The above systems are retainer- or consumer-based accounting
systems: they do not care who created the data, just who is holding
on to it. In contrast, our system is a producer-based accounting
system: the individual who produced the data is held accountable
for the data. By contrast, EROS [20] checks resource usage at
allocation time, when a page is requested from a space bank—since
the page will always be attributed to the space bank it was allocated
from, this is a producer-based accounting system. A space bank’s
limit can easily be increased; however, destroying a space bank
can cause resources in use by a subsystem to unceremoniously
disappear. In our system, use of garbage-collection means such
forced reclamation must be handled at the language level.

6.2 Programming Languages

A number of programming languages have support for resource
limits. These systems divide into those which statically ensure that
resource limits are respected, and those that perform these checks
dynamically.

Static resource limits PLAN [11] is an early example of a
programming language with extra restrictions in order to ensure
bounded resource usage. PLAN takes the time-honored technique
of removing general recursion in order to ensure the termination
of all programs. Unfortunately, such a restriction would be a bitter
pill to swallow for a general purpose programming language like
Haskell, and even so PLAN cannot prevent programs from tak-
ing large but bounded amounts of resources. Another restriction
that can be imposed is eliminating the garbage collector and uti-
lizing some other form of memory management such as monadic
regions [6]. Proof-based approaches include work by Gaboardi and
Péchoux [7], which develop techniques for proving resource prop-
erties on programs which compute over infinite data. These proofs
can be combined with code in a proof-carrying code scheme [15].
We think these are all promising lines of work and nicely comple-
ment dynamic resource limits.

Dynamic resource limits A number of programming languages
have support for dynamic resource limits.

A lot of work has gone towards resource limits for Java, since
Java is perhaps the most widely used programming language that

also has some ability to run untrusted code. JRes [3] is one of
the original systems for Java, and, like us, took the approach of
having a single heap. Resource usage was tracked by dynamically
rewriting Java bytecode to increment usage counters and track
deallocation via weak references. They suggested that resources
could be reclaimed by killing Java threads.

Luna [10] observed that killing Java threads was a very unsafe
operation. While our system addresses this problem by utilizing
Haskell’s support for asynchronous exceptions, Luna attempted
to build a system which could manage revocation without killing
any threads. They achieved this by introducing remote pointers,
which look like normal pointers but are revocable. An important
restriction demanded by this design is that ordinary pointers cannot
be accessed through remote pointers. As our system shows, you can
safely support both operations.

KaffeOS [1] provides each resource container its own separate
garbage collected heap. While each heap can be garbage-collected
separately, KaffeOS must treat inter-container references specially,
using a write barrier to detect these references and replace them
with entry and exit items. Like our system, KaffeOS has the desir-
able property that resource limits account for true resource usage
as seen by the operating system.

The line of work proposed by Wick et al. [26] and Price et
al. [17] takes a different approach than these Java-based systems.
These systems cleverly utilize the garbage collector to trace the set
of objects retained by a thread in order to determine its resource
consumption. This gives them a retainer-based cost model. The au-
thors of these papers argue that consumer-based is more appropri-
ate for a majority of applications. However, we think that retainer-
based accounting conflates resource accounting and resource recla-
mation. It is counter-intuitive to charge a thread for accepting an ob-
ject before the thread has even had a chance to examine the object,
and consumer-based systems must introduce weak/unaccountable
references to accommodate this fact. Similarly, it’s useful to know
the retainers of an object, even when the actual memory usage of a
thread is below quota. Furthermore, both of these systems have dif-
ficulty dealing with multiple retainers, having to charge the cost of
an object to an arbitrary container. Finally, tracing-based account-
ing charges only for the size of objects, and does not consider other
incidental but important factors such as memory fragmentation.

Resource containers have also shown up in the architecture of
Mozilla Firefox [25], under the name of compartments. While they
do not address the issue of resource limits directly, their architec-
ture closely mirrors ours: compartments are composed of arenas
(blocks which only hold a single type of object). However, to sup-
port per-compartment GC, cross-compartment references must be
mediated by wrappers, which serve as a remembered set and en-
force cross-compartment security policies. We think it would be
very easy to apply the ideas in our system to Firefox, by general-
izing compartments beyond their close association to a single web-
site.

7. Conclusion

In this paper, we have described how to implement dynamic space
limits system for Haskell. Our system has not yet landed in GHC
proper; the primary blockers are eliminating the overhead when
resource limits are not being used and fixing scalability issues when
there are a lot of resource containers live at the same time. We
hope to integrate the patchset into the mainline in the not-so-distant
future, if only as a flavor of GHC for resource limit minded users.

What is the applicability of this system beyond Haskell? Our
system relies on three key features of Haskell and GHC: the ability
to create multiple regions in the heap cheaply (a block-structured
heap [14]), the ability to safely terminate threads (asynchronous
exceptions [13]), and the ability to statically isolate code (restricted



monads/Safe Haskell [24]). A language which has all three of these
features would be able to adopt our system easily.12

While a block-structured heap is fairly general and could be
implemented by most storage systems (making this paper an ad-
vertisement for the block-structured design), asynchronous excep-
tions and restricted monads are quite distinctive to Haskell. Purity
in Haskell, for example, makes it more likely that arbitrary code
can recover from being killed by an asynchronous exception. In
languages like Java, killing a thread in a critical region can leave
the system in an inconsistent state, and systems like Luna [10] take
great care to avoid needing to kill threads. The situation for monads
is similar: while in principle our monadic container API could be
implemented in any language,13 the inability to enforce its usage
in the type system could lead to difficult to diagnose leaks of ref-
erences. Still, we think that our system occupies a very interesting
point in the design space, advocating for languages which provide
these features.
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