
ZU064-05-FPR paper 8 July 2013 9:50

Under consideration for publication in J. Functional Programming 1

The GHC Runtime System

fill in

Abstract

(This paper describes the implementation of the GHC runtime system)

Contents

1 Introduction 1

2 Storage 2

2.1 Blocks 2

2.2 Memory layout 3

2.3 Generational garbage collection 4

2.4 Parallel garbage collection 6

2.5 Summary 7

2.6 Further reading 8

3 Concurrency and parallelism 8

3.1 Threads 8

3.2 Foreign function interface 9

3.3 Load balancing 11

3.4 Sparks 11

3.5 MVars 12

3.6 Asynchronous exceptions 12

3.7 STM 13

3.8 Messages and white holes 14

3.9 Summary 15

3.10 Further reading 15

4 Lazy evaluation 15

4.1 Dynamic pointer tagging 16

4.2 Synchronization 16

4.3 Black holes 17

5 Acknowledgements 17

References 17

1 Introduction

The GHC runtime system is perhaps one of the most unusual language runtimes in wide

use today. Much of its implementation was directly motivated by the unusual (by popular



ZU064-05-FPR paper 8 July 2013 9:50

2 fill in

programming language standards!) features in Haskell which the runtime needs to support.

Some of these features, such as lazy evaluation and ubiquitous concurrency, complicate

the design of the system and require us to do a lot more work to give programmers the

high-level behavior they desire. Other features, such as an emphasis on pure computation

without mutation, simplify the design components such as garbage collection and software

transactional memory.

Complete, flesh out, rewrite

SM: This is a good start. I think it will help to tell the reader up front that we intend

to focus on the main novel aspects of the runtime how concurrency and parallelism, the

garbage collector, and lazy evaluation work. Everything else we say will be stuff that

you need to know in order to understand these three main topics, and the order of the

paper will reflect this - talking about the essential aspects of the evaluation model and data

representations first, because you need that to understand the rest.

SM: Please feel free to label sections that you would like me to write.

2 Storage

An essential component of a runtime system for any high-level programming language

is the garbage collector, which is responsible identifying and reclaiming memory from

objects which are no longer in use by the program. When it comes to a garbage collector,

efficiency is the order of the day: the speed of the garbage collector affects the performance

of all programs running on the runtime, and thus the GHC runtime devotes a substantial

portion of its complexity budget to a fast garbage collector. What do we need for a fast

garbage collector?

2.1 Blocks

The very first consideration is a low-level one: “Where is the memory coming from?” The

runtime can request memory from the operating system via malloc, but how much should

it request, and how should it be used? A simple design is to request a large, contiguous

block of memory and use it as the heap, letting the garbage collector manage objects

allocated within it. However, this scheme is fairly inflexible: when one of these heaps

runs out of memory, we need to double the size of the heap and copy all of the old data

into the new memory. Picking the initial sizes of heaps can be an exercise in fiddling with

black magic tuning parameters.

A more flexible scheme is a block-structured heap (Steele, 1977; Dybvig et al., 1994;

Marlow et al., 2008). The basic idea is to divide the heap into fixed-size B-byte blocks,

where B is a power of two: blocks are then linked together in order to provide memory

for the heap.1 These blocks need not be contiguous: thus, if your heap runs out of space,

instead of having to double the size of your heap, you can simply chain a few more blocks

onto it. There are some other benefits as well:

1 GHC uses 4kb blocks, but this is an easily adjustable constant.



ZU064-05-FPR paper 8 July 2013 9:50

The GHC Runtime System 3

1. Large objects (e.g. close to block size) do not have to be copied from one region to

another; instead, the block they reside in can be relinked from one region to another.2

2. Blocks make it easy to provide heap memory in contexts where it is not possible to

perform garbage collection. As an example, consider the GMP arbitrary-precision

arithmetic library. This C code requires the ability to allocate memory while per-

forming internal computation. However, if the heap runs out of memory, what can

you do? If the heap were contiguous, you would now need to carry out a GC to free

up some memory (or get a larger heap); but this would require us to halt the C code

(arbitrarily deep in some internal computation) while simultaneously being able to

identify all pointers to the heap that it may be holding. Whereas in a block-structured

heap, we can simply grab a new block and defer the GC until later.

3. Free memory can be recycled quickly, since a free block can be quickly reused

somewhere else.

One reason why this scheme works so well is that most objects on the heap are much

smaller than the block size; handling these cases is very simple. When an object is larger

than a block size, it needs to be placed into a block group of contiguous blocks—which in

turn need to be handled with some care to avoid fragmentation. The blocks themselves are

provided by the operating system in large units called megablocks.3

Finally, each block is associated with a block descriptor, which contains information

about the block such as what generation it belongs to, how full it is, what block group it

is part of, etc. An obvious place to put the block descriptor is at the beginning of a block,

but this runs into problems when the block is the member of a block group (the memory

must be contiguous!) Thus, the descriptors of blocks of a megablock are instead organized

together in the first block of a megablock; some care is taken to ensure that the runtime can

efficiently compute the block descriptor of any given block.

2.2 Memory layout

Before we can discuss the garbage collector proper, we have to describe the layout of the

data that is to be garbage collector. GHC has a uniform representation for objects on the

heap with a header, which indicates what kind of object the data is, and a payload, which

contains the actual data for an object (e.g. free variables for function values and thunks, or

fields for data values). The header points to an info table, which provides more information

about what kind of object the closure is, what code is associated with the object and what

the layout of the payload is (e.g. what fields are pointers.)

The presence of info tables makes it easy for the garbage collector to determine what

other closures on the heap an object may reference, as it says which fields in the payload

are pointers. Essentially everything that the GC touches has an info table, including the

stack frames (each block of compiled code receives its own info table.) In particular, this

makes calculating the roots (base objects which are always considered reachable) of the

2 Of course, this requires only one object to live in a block, which can result in fragmentation.
However, empirically this does not seem to have caused much of a problem.

3 1Mb in size, in the current implementation.



ZU064-05-FPR paper 8 July 2013 9:50

4 fill in

application much simpler: at the beginning of any block of code, the info table and registers

(which known and saved by the code itself) constitute all of the pointers in use, allowing

us to accurately perform GC.

There are many possible methods by which objects on the heap can be represented

(for example, in place of info tables, pointer tagging can be used to distinguish non-

pointers from pointers). However, in order to support lazy evaluation, headers have another

important function, which is that they double as pointers to the entry code responsible for

evaluating a thunk. The ability to replace one header with another and have the behavior

of a thunk change correspondingly is tremendously useful. The issues are discussed in

Section ??.

2.3 Generational garbage collection

The next question you might ask is, “What kind of garbage collector should I use?” By

default, GHC uses a generational copying collector.

A generational collector divides the heap into generations, where generations are num-

bered with the zero being the youngest. Objects are allocated into the youngest generation,

which has garbage collection performed on it whenever it runs out of memory. Surviving

objects are promoted to the next generation, which is collected less frequently, and so

forth. In a copying collector, this promotion occurs by simply copying the object into the

to-space, a process called evacuation. Evacuated objects are subsequently scavenged to

find what objects they refer to, so they can be evacuated as well.

The efficacy of generational collection hinges on the “generational hypothesis”, which

states that data that has been recently allocated is the most likely to die and become

unreachable. This tends to be particularly true of functional programs, which encourage

the use of short-lived intermediate data structures to help structure computation. In fact,

functional programs allocate so much memory that it makes sense not to immediately

promote data, since objects may not have had sufficient chance to die by the time of the

first GC. Thus, GHC further implements an aging scheme, where reachable objects in

generation 0 are not immediately promoted to generation 1; instead, they are aged and

promoted the next GC cycle.4

Use of a copying collector has other benefits for allocating heavy workloads. In particu-

lar, copying collection ensures that free memory is contiguous, which allows for extremely

efficient memory allocation using a bump allocator—so named because a heap allocation

simply involves bumping up the free space pointer. Additionally, while copying collectors

are often criticized for wasting half of their allocated memory to maintain the two spaces

for copying, a block structured heap can immediately reuse blocks in the from-space as

soon as they are fully evacuated.

4 When objects are only aged once, an equivalent way of stating this scheme is that generation 0
is split into two generations, but we never garbage collect just the younger generation, we always
collect both on a minor collection. This is in fact how GHC implements aging.



ZU064-05-FPR paper 8 July 2013 9:50

The GHC Runtime System 5

2.3.1 Mutability in the GC

The primary complication when implementing a generational garbage collector is the treat-

ment of mutable references. When a heap is immutable, pointers in the young generation

can only ever point into older generations; thus, to discover all reachable objects when

collecting an old generation, it suffices to simply collect all younger generations when

performing an (infrequent) collection of an older generation. However, if objects in the old

generation are mutable, they may point back into the young generation, in which case we

need to know that those objects are reachable even when the only references to them are in

the old generation (which we would like to avoid collecting).

The solution to this problem is to apply a GC write barrier (sometimes confusingly

referred to as a write barrier) to memory writes, adding the mutated object to a remembered

set which is also considered a root for garbage collection. Now the GC cannot accidentally

conclude an object pointed to by a mutable reference in an old generation is dead: it will

discover its reachability through the remembered set. However, this scheme is costly in

two ways: first, all mutation must pay the overhead of adding the object to the remembered

set, and second, as the remembered set increases in size, the amount of heap that must be

traversed during a minor collection also increases.

In the first case, GHC keeps track of mutation per object, spending a single memory

write to add a mutated object to a mutable list. This design lies in a continuum of precision:

one could increase the precision of the remembered set by only adding mutable fields

(rather than objects), or one could decrease the precision by only tracking cards (i.e.

portions of the heap) at a larger granularity. Increased precision increases the overhead

of the mutable list but reduces the amount of extra work the GC needs to perform, while

reduced precision makes mutation more efficient but leads to slower minor collections.

We think that mutation per object is a good balance: mutation is not prevalant enough in

functional code that coarse-grained card making buys much, and most mutable objects in

Haskell are quite small, with only one or two fields.5

In the second case, GHC can take advantage of an interesting property of lazy functional

programs: thunks are only ever mutated once, in order to update them with their fully

evaluated values—they are immutable afterwards. Thus, we can immediately eliminate an

updated thunk from the mutable list by eagerly promoting the data the updated thunk points

to into the same generation as the thunk itself. Since the thunk is immutable, this data is

guaranteed not to be GC’d until the thunk itself is GC’d as well. This leads to an interesting

constraint on how garbage collection proceeds: we must collect older generations first, so

that objects we may want to promote have not been evacuated yet. Because an already

evacuated object may have forwarding pointers pointing to it, it cannot be evacuated again

within the same GC.

5 However, this assumption has caused the GHC runtime some grief, e.g. in the case of mutable
arrays of pointers, which we used to scan the entirety. Today, we have a card-marking scheme to
permit mutable arrays to be efficiently GC’d.



ZU064-05-FPR paper 8 July 2013 9:50

6 fill in

2.4 Parallel garbage collection

A generational garbage collector offers quite good performance, but there is still the ques-

tion, “Is it fast enough?” One avenue for speeding up the garbage collector when multiple

cores are available is to perform parallel garbage collection, having multiple threads tra-

verse the heap in parallel. Note the distinction from concurrent collection, where the GC

runs concurrently with user code which is mutating values on the heap. GHC implements

parallel collection (Marlow et al., 2008) but not concurrent collection: concurrent collec-

tion requires synchronization between the GC and the mutator and consequently is more

complex. However, we have experimented with a form of concurrent collection in which

individual cores have local heaps that can be collected independently of activity on the

other cores (?).

There are two primary technical challenges that accompany building a parallel garbage

collector. The first is how to divide the GC work among the threads, the second is how to

synchronize when two GC threads attempt to evacuate the same object.

GHC overcomes the first challenge by utilizing the block structure of the heap. In

particular, a block in the to-space of a garbage collection constitutes a unit of work: a thread

can either claim the block to scavenge for itself, or the block can be transferred to another

thread to process. Once blocks are chosen as the basic unit of work, there are a variety of

mechanisms by which work can be shared: blocks can be statically assigned to GC threads

with no runtime load balancing, blocks can be taken from a global queue which provides

blocks to all threads, or a hybrid solution can have threads have local queues, but permit

other threads to steal work from other queues when they are idle via a work-stealing queue

structure. (Arora et al., 1998) GHC originally implemented a single global queue, but we

have since switched work-stealing queues because they have much better data locality, as

processors prefer to take work from their local queues before stealing work from others. In

fact, we don’t want to do any load-balancing on minor collections, because it ruins locality

by shipping work off to another core when the data is likely already in the cache of the

original core. (Marlow et al., 2009)

The second challenge reflects the primary cost of parallel GC, which is the extra syn-

chronization overhead any parallel scheme will impose. In particular, we must prevent

the GC from duplicating mutable objects when multiple threads attempt to evacuate the

same object by synchronizing the object (by either locking it pessimistically or compare-

and-swapping optimistically). This synchronization is expensive; fortunately, there is a

wonderful benefit for immutable objects: they require no synchronization, because it is

safe to have multiple copies of an immutable data structure! Eliminating the locks in these

cases accounts for a 20-30% speedup, which is nothing to sneeze at.

One important parameter which must be set properly is the size of the young gener-

ation, i.e. the nursery. If the nursery is too small, then we will need to perform minor

garbage collections too frequently. But if it is too large, then cores will generate a lot

of memory traffic getting data that is not in their cache. In general, memory bandwidth

is the bottleneck when multiple cores are allocating quickly; thus, having the nursery

be the size of the cache is generally the best setting. But perhaps see the discussion at

http://donsbot.wordpress.com/2010/07/05/ghc-gc-tune-tuning-haskell-gc-settings-for-fun-and-pr



ZU064-05-FPR paper 8 July 2013 9:50

The GHC Runtime System 7

2.5 Summary

SM: Not sure whether going into this much detail is helpful to the average reader. I’m

prepared to be persuaded otherwise.

We conclude by sketching the overall operation of GHC’s parallel, generational, block-

structured garbage collector, with all of the features that we have described thus far.

The main garbage collection function GarbageCollect in rts/sm/GC.c proceeds (af-

ter all user execution is halted) as follows:

1. Prepare all of the collected generations by moving their blocks into the from-space

and throwing out their mutable lists (recall the remembered set is only necessary

when the generation is not being collected.) The blocks themselves indicate what

generation live objects in them should be promoted to.

2. Wakeup the GC threads, initializing them with eager promotion enabled.

3. Evacuate the roots of application (including the mutable lists of all older genera-

tions), giving work to the main GC thread to do.

4. In a loop, each thread:

(a) Look for local blocks to scavenge (e.g. if the thread recently evacuated some ob-

jects which it hasn’t scavenged), starting with blocks from the oldest generation.

(b) Try to steal blocks from another thread (at the very beginning of a GC, idle GC

threads are likely to steal work from the main thread, if they didn’t have any work

to begin with).

(c) Halt execution, but while there are still GC threads running, poll to see whether

or not there is any work to do.

5. Cleanup after the GC, which includes running finalizers, returning memory to the

operating system, resurrecting threads XXX, etc.

The evacuate function evacuate in rts/sm/Evac.c takes a pointer to an object and

attempts to copy it into a destination generation to-space, as specified by the block it resides

in (or the generation that it needs to be promoted to, if eager promotion is enabled). Before

doing so, it performs the following checks:

1. Is the object heap allocated? (If not, it is handled specially.)

2. Was the object already evacuated (e.g. the pointer already points to a to-space, or the

object is a forwarding pointer)? If it was, and to a generation which is younger than

the intended target, then it reports the evacuation as failed (so scavenge can add a

mutable reference pointing to the object to a mutable list, etc.)

After the copy, the original is overwritten with a forwarding pointer. If the object in ques-

tion is mutable, this is done atomically with a compare-and-swap to avoid races between

two threads evacuating the same object.

The scavenge function scavenge_block in rts/sm/Scav.c walks a pointer down

the provided block (filled in previously by evacuate), reading the info table in order to

determine what kind of object it is. It evacuates the fields of the object, temporarily turning

off eager promotion if the object is mutable. If evacuation is unsuccessful for the field

of a mutable object, it must be added back to the mutable list. When the block is finished

being scavenged, it gets pushed to the list of completed blocks. The block that is scavenged



ZU064-05-FPR paper 8 July 2013 9:50

8 fill in

can be thought of as the “pending work queue”; this optimization was first suggested as

part of Cheney’s algorithm and avoids the need for an explicit queue of pending objects to

scavenge.

2.6 Further reading

While we have discussed many of the most important features of GHC’s garbage collector,

there remain many other features we have not discussed here. These include:

• an implementation of a compacting collector, no docs about this!

• support for weak pointers and finalizers, (Peyton Jones et al., 2000) We might ac-

tually want to talk about this, it is probably one of the more voodoo-y parts of the

system and

• garbage collection of static objects.

We have also omitted many details about the features we have discussed. For a good

account of the block-structured parallel garbage collector, please see (Marlow et al., 2008);

however, since the paper was published the default locking and load balancing schemes for

the parallel GC have changed, and we have implemented the improvement described in

Section 7.1. Additionally, the GHC Commentary (Marlow, 2013) has good articles for

technically inclined GHC hackers on a variety of issues we have discussed here, including

eager promotion, remembered sets ete etc

3 Concurrency and parallelism

We now turn our attention to the implementation of concurrency (Peyton Jones et al.,

1996) and parallelism (Harris et al., 2005) in the GHC runtime. It is well worth not-

ing the difference between concurrency and parallelism: a parallel program uses multiple

processing cores in order to speed up computation, while a concurrent program simply

involves multiple threads of control, which notionally execute “at the same time” but may

be implemented merely by interleaving their execution.

GHC is both concurrent and parallel, but many of the features we describe are applicable

in non-parallel but concurrent systems (e.g. systems which employ cooperative threading

on one core): indeed, some were developed before GHC had a shared memory multi-

processor implementation. Thus, in the first section, we consider how to implement threads

without relying on hardware support. We then describe a number of inter-thread communi-

cation mechanisms which are useful in concurrent programs (and say how to synchronize

them). Finally describe what needs to be done to make compiled code thread-safe.

3.1 Threads

Concurrent Haskell (Peyton Jones et al., 1996) exposes the abstraction of a Haskell thread

to a programmer. As the operating system also provides native threads, one may wonder if

there any difference between a Haskell thread and an OS thread.

Many languages with multithreading support simply expose OS threads: a “thread” is

one and the same as an OS thread. While simple, this approach has costs. In particular, users



ZU064-05-FPR paper 8 July 2013 9:50

The GHC Runtime System 9

of these languages must be economical in their use of threads, as most operating systems

cannot support thousands of simultaneous OS threads. This is a shame, because in many

applications the most natural way to structure a program involves thousands of logical

threads: consider a web server, for example, which logically has a thread of execution per

request. Furthermore, when a program cannot be made thread-safe and must be run in a

single OS thread, no concurrency is available; it must be implemented in userspace, as is

the case with many asynchronous IO libraries.

To support cheap threads, we must multiplex multiple Haskell threads onto a single OS

thread. A Haskell thread runs until it is preempted, at which point we suspend its execution

and switch to running another thread, an operation handled by the scheduler. How is this

preemption implemented? True preemption is difficult to implement, because it implies we

can interrupt the execution of code any any point, even if it would be leaving some data

structures in an intermediate state. So instead, compiled Haskell code yields cooperatively6

at various safe points, where we know that the heap is in order and our internal state is saved

(to be restored on resumption). These points are in fact when Haskell code performs a heap

check to find out if there is enough free memory on the heap to perform an allocation. These

checks automatically are safe, because Haskell code already needs to be able to yield to

the garbage collector, in case we have run out of memory. This check is extended to also

yield when a thread has been preempted.7

Once we have a way of suspending and resuming threads, the scheduler loop is quite

simple. Maintain a run queue of threads, and repeatedly:

1. Pop the next thread off of the run queue,

2. Run the thread until it yields,

3. Check why the thread exited:

• If it ran out of heap, call the GC and then run the thread again;

• If it ran out of stack, enlarge the stack and then run the thread again;

• If it was preempted, push the thread to the end of the queue;

• If the thread exited, continue.

3.2 Foreign function interface

The benefit of lightweight concurrency is that it offers a way of producing threads of con-

trol which are indistinguishable from OS threads, but are dramatically cheaper. However,

there are some places when this illusion does not hold: of particular note is the foreign

function interface (FFI) (Marlow & Jones, 2004), which permits Haskell code to call out

to foreign code not compiled by GHC, and vice versa. What happens if an FFI call blocks?

As our concurrency is cooperative, if an FFI call refuses to return to the scheduler, the

execution of all other threads will grind to a halt. There isn’t really any way around this

6 Cooperative in the sense that the compiled code has explicit yield points, not in the sense that the
code a programmer has to write contains yield points.

7 In practice, preemption is handled by way of a timer signal, which, when fired, sets the heap limit
to zero, triggering a faux “heap overflow” which the scheduler can then identify as a preempt and
not a true request for garbage collection. Thus, the heap check and preemption check is a single
conditional branch.



ZU064-05-FPR paper 8 July 2013 9:50

10 fill in

problem without introducing true OS threads to the mix: what we’d like to do is arrange

for the blocking FFI call and the scheduler to run on different OS threads concurrently.

As it turns out, it is simpler to move the scheduler to a different OS thread than the

FFI. Thus, we decompose OS threads into two parts: the OS thread itself (called a task in

GHC terminology), and the Haskell execution context (called a capability). The Haskell

execution context contains the scheduler loop and is responsible for the contents of the run

queue: when executing, it is owned exclusively by the particular task (OS thread) which is

running it. A single-threaded Haskell program has one capability: the capability is a global

lock on the Haskell runtime. Now, before a blocking FFI call is made, the task releases the

capability: if there is another idle worker thread, it can acquire the now free capability and

continue running Haskell code.

When an FFI call returns, we’d like to return the capability to the original OS thread.

Thus, we have to modify the scheduler loop as follows:

1. Check if we need to yield the capability to some other OS thread, e.g. if an FFI call

has just finished,

2. Run as before.

Another place where Haskell threads differ from OS threads is thread local state. As

capabilities are passed around OS threads, we make no guarantee that any given FFI call

will be performed on the same OS thread as the previous FFI call. To accomodate Haskell

threads which rely on thread-local state, Haskell introduces a bound thread, which binds a

Haskell thread to a fresh OS thread.8

How can we support bound threads? A simple scheme is to give each bound thread its

own OS thread. However, if we have only one capability, we need to coordinate these new

OS threads so that only one is running Haskell code at a time. We can do this by, once

again, passing the capability to whichever OS thread truly needs to run the bound thread:

1. Check if we need to yield the capability to some other OS thread, e.g. if an FFI call

has just finished,

2. Pop the next thread off of the run queue,

3. Check if the thread is bound:

• If the thread is bound but is already scheduled on the OS thread, proceed.

• If the thread is bound but on the wrong OS thread, give the capability to the

correct task.

• If the thread is not bound but this OS thread is bound, give up the capability, so

that any capability that truly needs this OS thread will be able to get it.

4. Run as before.

While the movement of capabilities from task to task is somewhat intricate, it imposes

no overhead when bound threads are not used.

8 GHC also calls these in-calls, due to the fact that external code which calls into Haskell must be
bound: if it makes the Haskell code calls out via the FFI again, the inner and outer C code may
rely on the same thread local state.



ZU064-05-FPR paper 8 July 2013 9:50

The GHC Runtime System 11

3.3 Load balancing

Assuming that the compiled Haskell code is thread safe (see Section 4.2), it is now very

simple to parallelize execution: allocate multiple capabilities! Each OS thread in possession

of a capability runs the scheduler loop, and everything works the way you’d expect.

There is one primary design choice: should each capability have its own run queue, or

should there be a single global run queue? A global run queue avoids the need for any

sort of load balancing, but requires synchronization and makes it difficult to keep Haskell

threads running on the same core, destroying data locality. With separate run queues,

however, threads must be load balanced: one capability could accumulate too many threads

while the other capabilities idle.

The very simple load balancing scheme GHC uses is as follows: when a capability runs

out of threads to run, it suspends itself (releasing its lock) and waits on a condition variable.

When a capability has too many threads to run (it checks each iteration of its schedule

loop), it takes out locks on as many idle capabilities as it can and pushes its excess threads

onto their run queues. Finally, it releases the locks and signals on each idle capabilities that

they can start running. The benefit of this scheme is that the run queues are kept completely

unsynchronized, but a plausible alternative is to use work-stealing queues.

3.4 Sparks

Sparks (Marlow et al., 2009) are a mechanism for speculative parallel computation. When

a program is not utilizing all of its CPUs, the other CPUs can be reallocated to evaluate

thunks that the programmer indicated are likely to be needed in the future. These units of

work are called sparks, and they offer a mechanism for cheap, deterministic parallelism—

in contrast to Haskell threads, which are more expensive and nondeterministic.

Sparks take advantage of Haskell’s lazy evaluation (Section ??) to provide a source of

units of work for sparking. The ability to speculatively evaluate thunks—a spark is not

guaranteed to be evaluated—comes from the fact that thunks encapsulate pure code and

have no side effects. Furthermore, as thunk update is thread safe (Section 4.2), they provide

a natural mechanism of communicating the result of a computation back to the thread that

requested it.

Given thread-safe thunks, the implementation of sparks is quite simple: when a compu-

tation is sparked, it is stored in a spark pool associated with a capability. When a capability

has no work to do (e.g. its run queue is empty), it creates a spark thread, which repeatedly

attempts to retrieve a spark from the capability’s spark pool and evaluate it. Thunk update

ensures the results get propagated back to the main thread. If the capability receives any

real work, it immediately terminates the spark thread.

Whereas threads rarely need to be load balanced, sparks frequently need to be migrated,

as the capability that is generating sparks is likely to be the one that is also doing real work.

Sparks are balanced using bounded work-stealing queues (Arora et al., 1998; Hendler

et al., 2005), where a spark thread goes and steals sparks from other threads when it has

none to execute.

One important optimization for sparks is removing sparks which will not contribute any

useful parallelism. For example, if the spark is evaluated in the main thread before a spark



ZU064-05-FPR paper 8 July 2013 9:50

12 fill in

thread gets around to it, the spark is fizzled and should be removed from the spark pool.

Additionally, if a spark’s thunk has no references to it (i.e. is dead), then the result cannot

possibly have an impact on program execution and it should also be pruned. It is relatively

easy to check for both of these conditions in the garbage collector, by traversing the spark

pool and checking if the spark points to a thunk that was successfully evacuated.9

3.5 MVars

Haskell offers a variety of ways for Haskell threads to interact with each other. We now

describe how to implement MVars, the simplest form of synchronized communication

available to Haskell threads. An MVar is a mutable location that may be empty. There

are two operations which operate on an MVar: takeMVar, which blocks until the location

is non-empty, then reads and returns the value, leaving the location empty, and putMVar,

which dually blocks until the location is empty, then writes its value into location. An MVar

can be thought of as a lock when its contents are ignored.

The blocking behavior is the most interesting aspect of MVars: ordinarily, one would

have to implement this functionality using a condition variable. However, because our

Haskell threads are not operating system threads, we can do something much more lightweight:

when a thread realizes it needs to block, it simply adds itself to a blocked threads queue

corresponding to the MVar. When another thread fills in the MVar, it can check if there is

a thread on the blocked list and wake it up immediately.

This scheme has a number of good properties. First, it allows us to implement efficient

single wake-up on MVars, where only one of the blocking threads is permitted to proceed.

Second, using a FIFO queue, we can offer a fairness guarantee, which is that no thread

remains blocked on an MVar indefinitely unless another thread holds the MVar indefinitely.

Finally, because threads are garbage collected objects, if the MVar a thread is blocking on

becomes unreachable, so does the thread. Thus, in some cases, we can tell when a blocked

thread is deadlocked and terminate it.

3.6 Asynchronous exceptions

MVars are a cooperative form of communication, where a thread must explicitly opt-

in to receive messages. Asynchronous exceptions (Marlow et al., 2001), on the other

hand, permit threads to induce an exception in another thread without its cooperation.

Asynchronous exceptions are much more difficult to program with than their synchronous

brethren: as a signal can occur at any point in a program’s execution, the program must be

careful to register handlers which ensure that any resources are released and invariants are

preserved. In pure functional programs, this requirement is easier to fulfill, as pure code

can always be safely aborted. Asynchronous exceptions are quite useful in a variety of sit-

uations, including timing out long running computation, aborting speculative computation

and handling user interrupts.

9 An alternate design is to have sparks be GC roots, so that an outstanding spark keeps its data alive.
While this is convenient for the implementation of parallel strategies, it can result in space leaks,
and GHC no longer uses this strategy.



ZU064-05-FPR paper 8 July 2013 9:50

The GHC Runtime System 13

Triggering an asynchronous exception is relatively simple with preemptive scheduling:

force the target thread back to the scheduler, at which point the scheduler can introduce

the exception and walk up the stack, looking for exception handlers. In case a thread is

operating in a sensitive region, an exception masking flag can be set, which defers the

delivery of the exception (it is saved to a list of waiting exceptions on the thread itself).

There are two primary differences between how asynchronous exceptions and normal

exceptions are handled. The first is that a thread which is messaged may have been blocking

on some other thread (i.e. on an MVar); thus, when an asynchronous exception is received,

the thread must remove itself from the blocked list of threads.10

This explanation probably still needs a little work

The second difference is how lazy evaluation is handled. When pure code raises an

exception, referential transparency demands that any other execution of that code will

result in the same exception. Thus, while we are walking up the stack, when we see an

update frame, which is a continuation responsible for taking a value and saving it to the

thunk (overwriting it), we go ahead and instead overwrite the thunk with a new thunk that

always throws the exception. However, in the case of an asynchronous exception, the code

could have simply been unlucky: when someone else asks for the same computation, we

should simply resume where we left off. Thus, we instead freeze the state of evaluation by

saving the current stack into the thunk. (Reid, 1999) This involves walking up the stack

and performing the following operations when we encounter an update frame:

1. Allocate a new closure (called an AP_STACK closure, for “apply stack”) which con-

tains the contents of the stack above the frame, and overwriting the old thunk11 with

a pointer to this closure,

2. Truncate the stack up to and including the update frame, and

3. Push a pointer to the new AP_STACK closure onto the stack.

The result is a chain of AP_STACK closures, where the top of each frozen stack links to

the next frozen stack. When another thread evaluates an AP_STACK closure (intending to

evaluate the thunk), it pushes the frozen stack onto the current stack, thus resuming the

computation.

3.7 STM

Software Transactional Memory, or STM, is an abstraction for concurrent communication

which emphasizes transactions as the basic unit of communication. The big benefit of STM

over MVars is that they are composable: while programs involving multiple MVars must be

very careful to avoid deadlock, programs using STM can be composed together effortlessly.

Before discussing what is needed to support STM in the runtime system, it is worth

mentioning what we do not have to do. In many languages, an STM implementation must

10 If your queues are singly linked, you will need some cleverness to entries. GHC does this by
stubbing out an entry with an indirection, the very same that is used when a thunk is replaced with
its true value, and modifying queue handling code to skip over indirections; because blocking
queues live on the heap, the garbage collector will clean it up for us in the end.

11 Possibly a black hole.



ZU064-05-FPR paper 8 July 2013 9:50

14 fill in

also manage all side-effects that any code in a transaction may perform. In an impure

language, there may be many of these side-effects (even if they are local), and the runtime

must make them transactional at great cost. In Haskell, however, the type system enforces

that code running in an STM transaction will only ever perform pure computation or

explicit manipulation of shared state. This eliminates a large inefficiency that plagues many

other STM implementation.

How is it implemented

Maybe move this below messages and white holes

3.8 Messages and white holes

In the descriptions above, we said very little about the synchronization that is necessary

to implement them in a multiprocessor environment. Under the hood, the GHC runtime

has two primary methods of synchronization: messages and white holes (effectively a spin-

lock). The runtime makes very sparing use of OS level condition variables and mutexes,

since they tend to be expensive.

GHC uses a very simple message passing architecture to pass messages between capa-

bilities. A capability sends a message by:

1. Allocating a message object on the heap;

2. Taking out a lock on the message inbox of the destination capability;

3. Appending the message onto the inbox;

4. Interrupting the capability, using the same mechanism as the context switch timer

(setting the heap limit to zero); and

5. Releasing the lock.

This allows the message to be handled by the destination capability at its convenience,

i.e. after the running Haskell code yields and we return to the scheduling loop. In general,

the benefit of message passing systems is that they remove the need for synchronizing any

of the non-local state that another capability might want to modify: instead, the capability

just sends a message asking for the state to be modified.

When sending a message is not appropriate, e.g. in the case of synchronized access to

closures which are not owned by any capability in particular, GHC instead uses a very

simple spinlock on the closure header, replacing the header with a white hole header that

indicates the object is locked. If another thread enters the closure, they will spinlock until

the original header is restored. A spinlock is used as the critical regions they protect tend to

be very short, and it would be expensive to allocate a mutex for every closure that needed

one.

We can now describe how MVars and asynchronous exceptions are synchronized. An

MVar uses a white hole on the MVar itself to protect manipulations of the blocked thread

queue; additionally, when it needs to wakeup a thread, it may need to send a message to the

capability which owns the unblocked thread. An asynchronous exception is even simpler:

it is simply a message to the capability which owns the thread.



ZU064-05-FPR paper 8 July 2013 9:50

The GHC Runtime System 15

3.9 Summary

Haskell threads are lightweight threads of execution which multiplex onto multiple CPU

cores. Each core has a Haskell execution context which contains a scheduler for running

these threads; in order to handle FFI calls execution contexts can migrate from core to core

as necessary. Threads are load balanced across execution contexts by having execution

contexts with work push threads to contexts which don’t. Sparks are a simple way of

utilizing idle cores when there is no other real work to do.

By in large, all inter-thread communication in Haskell is explicit, thus making it much

easier to compile Haskell in a thread-safe way. MVars, asynchronous exceptions and STM

are explicitly used by Haskell code and can be efficiently implemented by taking advantage

of our representation of Haskell threads. The basic techniques by which these are synchro-

nized are messages and white holes (spinlocks). We defer the issue of synchronizing lazy

evaluation to the next section.

3.10 Further reading

We have said little about how to use the concurrency mechanisms described here. XXX

4 Lazy evaluation

Lazy evaluation is an evaluation strategy which delays the evaluation of an expression until

its result is requested. Operationally, an expression does not result in a computation, but

rather results in the allocation of a thunk, which can be forced in order to produce the true

result of the expression. This result is then written over the thunk, so that future accesses

to the thunk avoid repeated evaluation.

There are a number of different strategies for implementing lazy evaluation. Their pri-

mary difference lies in who is responsible for updating the thunk: is it the evaluator of the

thunk, or the thunk itself? The former constitutes the cell model, where the call-sites of

thunks check if the thunk is evaluated before calling in and write back the result on return;

the latter constitutes the self-updating model, where call-sites unconditionally jump to (or

enter) the thunk, leaving the thunk responsible for updating itself. GHC utilizes a self-

updating model, partially a historical artifact from when all objects on the heap (including

data constructors) were expected to be evaluated by entering them, and because it works

well with dynamic pointer tagging (Section 4.1), which avoids performing the jump for

evaluated thunks at the cost of a cheap register comparison (no memory access).

Most languages give very little thought to the efficient implementation of thunks, since

they are not a core part of the language. However, Haskell is lazy by default, and thus

the speed of thunks is critical to the overall performance of most Haskell programs. As

a result, GHC has a very efficient implementation of thunks. This section discusses three

important aspects of efficient implementation of thunks: how to efficiently determine if

a thunk is already evaluated (Section 4.1), how to safely implement thunk update in a

multithreaded setting (Section 4.2), and how to avoid duplicated work evaluating a thunk

when two threads attempt to evaluate the same thunk at the same time (Section 4.3).



ZU064-05-FPR paper 8 July 2013 9:50

16 fill in

4.1 Dynamic pointer tagging

In the naı̈ve self-updating model, we always perform an indirect jump to the entry code of a

heap object before accessing its fields. If the object is already a data constructor, this jump

returns immediately as a no-op. Unfortunately, these indirect jumps are poorly supported

by modern branch prediction units on processors. Ideally, we would like to avoid making

a jump at all when it is unnecessary.

Modern GHC implements a dynamic pointer tagging scheme (Marlow et al., 2007) to

provide information on whether or not a heap object is evaluated or not. This scheme

works by using the lower order bits (two bits in a 32-bit machine, and three bits in a 64-bit

machine) in order to record whether or not the contents of a pointer are already evaluated.

If the lower order bits are zero, then the pointer is unevaluated and we need to enter the

closure. Otherwise, these bits can be used to record which constructor the object is, e.g. for

booleans, a tag of 1 would indicate False and tag of 2 would indicate True. Pointer tags

are easily added to an object when it is initially allocated (the tag never changes, because

data on the heap is immutable) and must be preserved by the garbage collector.

Pointer tagging is well worth considering even for non-lazy-by-default languages. Be-

cause case analysis on a tagged pointer can be done without any memory accesses, tagged

pointers enable user defined data types to be nearly as efficient as built-in types (e.g.

booleans), while at the same time allowing for fields in the constructors to store extra

information. And of course, they are essential for thunks!

4.2 Synchronization

We now turn our attention to how thunks are updated. Updating a thunk with its new

value constitutes mutation on shared state, thus, thunks update is an important obstacle on

the way to thread-safety.12 A naı̈ve approach is to synchronize all of the updates. This is

extremely costly: Haskell programs do a lot of thunk updates!

Once again, our saving grace is purity: as thunks represent pure computation, evaluating

a thunk twice has no observable effect: both evaluations are guaranteed to come up with

the same result. Thus, we should be able to keep updates to thunk unsynchronized, at the

cost of occasional duplication of work when two threads race to evaluate the same thunk.

A race can still be harmful, however, if we need to update a thunk in multiple steps and

the intermediate states are not valid. In the case of a thunk update, we need to both update

the header and write down a pointer to the result; if we update the header first, then the

intermediate state is not well-formed (the result field is empty); on the other hand, if we

update the result field first, we might clobber important information in the thunk. Instead,

we leave a blank word in every thunk where the result can be written in non-destructively,

after which the header of the closure can be changed.13

word step 1 step 2 step 3

0 THUNK THUNK IND \ valid closure

12 One might say it’s the only obstacle, as pure code requires no synchronization and explicit
interthread communication utilizes similarly explicit synchronization.

13 Appropriate write barriers must be added to ensure the CPU does not reorder these instructions.



ZU064-05-FPR paper 8 July 2013 9:50

The GHC Runtime System 17

1 - result result /

2 payload payload payload <- payload is slop

4.3 Black holes

Some thunks take a long time to evaluate: we’d like to avoid duplicating their work. What

we would like is for threads to notice when someone is working on a thunk, and wait for

the result to become available.

The mechanism by which this is implemented is a black hole, which represents a thunk

that is currently being evaluated. A thunk can be claimed by overwriting it with a black

hole. Black holes were originally proposed as a solution for a space leak that occured in

some cases of tail calls (Jones, 2008), but they have found their utility in a multithreaded

setting. Recall that a thread wishing to evaluate a thunk jumps to the entry code; the entry

code of a black hole places a thread on the blocked queue of the owner the black hole, to

be woken up when the thunk has been evaluated.14

There are two times when a black hole can be written: it can be eagerly written as soon

as a thunk is evaluated, or it can be lazily deferred for when a thread has gotten descheduled

(and thus the thunk was taking a long time to evaluate.) If a black hole is written eagerly,

it is on the fast path of thunk updates, and we cannot use synchronization. We call these

eager black holes (also known as grey holes), which do not guarantee exclusivity. Lazy

blackholing is done more infrequently, and thus we can afford to use a CAS to implement

them.15

The upshot is that GHC is able to implement lazy evaluation without any synchroniza-

tion for most thunk updates, applying synchronization only when it is specifically neces-

sary. The cost of this scheme is low: a single extra field in thunk and a (rare) duplication of

work upon a race.

5 Acknowledgements

Alexander Chernyakhovsky for helpful discussions.

References

Arora, Nimar S., Blumofe, Robert D., & Plaxton, C. Greg. (1998). Thread scheduling for

multiprogrammed multiprocessors. Pages 119–129 of: Proceedings of the tenth annual acm

symposium on parallel algorithms and architectures. SPAA ’98. New York, NY, USA: ACM.

Dybvig, R. Kent, Eby, David, & Bruggeman, Carl. (1994). Don’t stop the BIBOP: Flexible and

efficient storage management for dynamically-typed languages. Tech. rept.

14 It is somewhat difficult to put a blocked queue on the thunk itself (due to the lack of
synchronization); instead, GHC uses a per-thread list of black hole blockers which is traversed
every time a thread finishes updating a thunk.

15 While multiple threads may have eagerly blackholed a thunk, we guarantee only one thread has
lazily blackholed it. If a thunk must not be duplicated, it can achieve this by forcing all of its callers
to perform lazy blackholing (noDuplicate#). unsafePerformIO uses precisely this mechanism
in order to avoid duplication of IO effects.



ZU064-05-FPR paper 8 July 2013 9:50

18 fill in

Harris, Tim, Marlow, Simon, & Jones, Simon Peyton. (2005). Haskell on a shared-memory

multiprocessor. Pages 49–61 of: Proceedings of the 2005 acm sigplan workshop on haskell.

Haskell ’05. New York, NY, USA: ACM.

Hendler, Danny, Lev, Yossi, Moir, Mark, & Shavit, Nir. (2005). A dynamic-sized nonblocking work

stealing deque. Tech. rept.

Jones, Richard. (2008). Tail recursion without space leaks. Journal of functional programming,

2(01), 73.

Marlow, Simon. (2013). GHC commentary: The garbage collector. Available online at

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/GC.

Marlow, Simon, & Jones, Simon Peyton. (2004). Extending the haskell foreign function interface

with concurrency. Pages 57–68 of: In proceedings of the acm sigplan workshop on haskell.

Marlow, Simon, Jones, Simon Peyton, Moran, Andrew, & Reppy, John. (2001). Asynchronous

exceptions in haskell. Pages 274–285 of: Proceedings of the acm sigplan 2001 conference on

programming language design and implementation. PLDI ’01. New York, NY, USA: ACM.

Marlow, Simon, Yakushev, Alexey Rodriguez, & Jones, Simon Peyton. (2007). Faster laziness using

dynamic pointer tagging. Acm sigplan notices, 42(9), 277.

Marlow, Simon, Harris, Tim, James, Roshan P., & Peyton Jones, Simon. (2008). Parallel

generational-copying garbage collection with a block-structured heap. Pages 11–20 of:

Proceedings of the 7th international symposium on memory management. ISMM ’08. New York,

NY, USA: ACM.

Marlow, Simon, Peyton Jones, Simon, & Singh, Satnam. (2009). Runtime support for multicore

Haskell. Acm sigplan notices, 44(9), 65.

Peyton Jones, Simon, Gordon, Andrew, & Finne, Sigbjorn. (1996). Concurrent haskell. Pages 295–

308 of: Proceedings of the 23rd acm sigplan-sigact symposium on principles of programming

languages. POPL ’96. New York, NY, USA: ACM.

Peyton Jones, Simon L., Marlow, Simon, & Elliott, Conal. (2000). Stretching the storage manager:

Weak pointers and stable names in haskell. Pages 37–58 of: Selected papers from the 11th

international workshop on implementation of functional languages. IFL ’99. London, UK, UK:

Springer-Verlag.

Reid, Alastair. (1999). Putting the spine back in the Spineless Tagless G-Machine: An

implementation of resumable black-holes. Implementation of functional languages, 186–199.

Steele, Guy. (1977). Data representations in PDP-10 MACLISP. Tech. rept. MIT.


